Skip to main content
Log in

Induced expression of Ganoderma boninense Lanosterol 14α-Demethylase (ERG11) during interaction with oil palm

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

Methods and results

This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

Conclusion

This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. AS Idris, D Ariffin, TR Swinburne, TA Watt 2000 The identity of Ganoderma species responsible for basal stem rot (BSR) disease of oil palm in Malaysia – morphological characteristics. MPOB Information Series, vol 102. MPOB, Malaysia

  2. Castillo SY, Rodríguez MC, González LF, Zúñiga LF, Mestizo YA, Medina HC, Montoya C, Morales A, Romero HM, Sarria GA (2022) Ganoderma zonatum is the causal agent of basal stem rot in oil palm in Colombia. J Fungi 8:230. https://doi.org/10.3390/jof8030230

    Article  CAS  Google Scholar 

  3. Parveez GKA, Tarmizi AHA, Sundram S, Loh SK, Ong-Abdullah M, Palam KDP, Salleh KM, Ishak SM, Idris Z (2021) Oil palm economic performance in Malaysia and R&D progress in 2020. J Oil Palm Res 33:181–214. https://doi.org/10.21894/jopr.2021.0026

    Article  CAS  Google Scholar 

  4. Turner PD (1965) The oil palm and Ganoderma IV. Avoiding disease in new planting. The Planter 41:331–333

    Google Scholar 

  5. Chan JJ, Latiffah Z, Liew KW (2011) Pathogenicity of monokaryotic and dikaryotic mycelial of Ganoderma boninense on oil palm seedlings and germinated seeds in Malaysia. Australas Plant Path 40:222–227

    Article  Google Scholar 

  6. Utomo C, Tanjung ZA, Aditama R, Buana RFN, Pratomo ADM, Tryono R, Liwang T (2018) Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announc 6:e0012218. https://doi.org/10.1128/genomeA.00122-18

    Article  Google Scholar 

  7. Zain N, Idris AS, Kushairi A, Ramli US (2013) Metabolite profiling of oil palm towards understanding basal stem rot (BSR) disease. J Oil Palm Res 25(1):58–71

    CAS  Google Scholar 

  8. Ho C-H, Tan Y-C, Yeoh K-A, Ghazali A-K, Yee W-Y, Hoh C-C (2016) De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genomics 17:66. https://doi.org/10.1186/s12864-016-2368-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasid OA, Lim F-H, Iskandar NF, Idris AS, Parveez GKA (2014) Isolation of a partial cDNA clone coding for Ganoderma boninense pde. J Oil Palm Res 26(3):265–269

    CAS  Google Scholar 

  10. Lim F-H, Fakhrana IN, Rasid OA, Idris AS, Ho C-L, Shaharuddin NA, Parveez GKA (2017) Molecular cloning and expression analysis of Ganoderma boninense cyclophilins at different growth and infection stages. Physiol Mol Plant Pathol 99:31–40. https://doi.org/10.1016/j.pmpp.2016.05.005

    Article  CAS  Google Scholar 

  11. Lim F-H, Rasid OA, Idris AS, Parveez GKA (2018) Molecular cloning of Ganoderma boninense Hog1-Type mitogen-activated protein kinase (MAPK) cDNA and transcriptional response to salinity stress. J Oil Palm Res 30(3):380–389

    CAS  Google Scholar 

  12. Teh C-Y, Pang C-L, Tor X-Y, Ho P-Y, Lim Y-Y, Namasivayam P, Ho C-L (2019) Molecular cloning and functional analysis of a necrosis and ethylene inducing protein (NEP) from Ganoderma boninense. Physiol Mol Plant Pathol 106:42–48. https://doi.org/10.1016/j.pmpp.2018.12.003

    Article  CAS  Google Scholar 

  13. Govender N, Wong MY (2017) Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 107:483–490. https://doi.org/10.1094/PHYTO-02-16-0062-R

    Article  CAS  PubMed  Google Scholar 

  14. Lim F-H, Rasid OA, Idris AS, As’wad AWM, Vadamalai G, Parveez GKA, Wong M-Y (2021) Enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense. Folia Microbiol 66:677–688. https://doi.org/10.1007/s12223-021-00852-6

    Article  CAS  Google Scholar 

  15. Becher R, Wirsel SGR (2012) Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 95:825–840. https://doi.org/10.1007/s00253-012-4195-9

    Article  CAS  PubMed  Google Scholar 

  16. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  PubMed  Google Scholar 

  17. Mille-Lindblom C, Fisher H, Tranvik LJ (2006) Litter associated bacteria and fungi- a comparison of biomass and communities across lakes and plant species. J Freshw Biol 51:730–741

    Article  Google Scholar 

  18. Dawson-Andoh BE (2002) Ergosterol content as a measure of biomass of potential biological control fungi in liquid cultures. J Holz Roh- und Werkstoff 60:115–117

    Article  CAS  Google Scholar 

  19. Hof H (2001) Critical annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother 45:2987–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheng C, Miao Z, Ji H, Yao J, Wang W, Che X, Dong G, Lu J, Guo W, Zhang W (2009) Three-dimensional model of lanosterol 14α-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding. Antimicrob Agents Chemother 53:3487–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. AS Idris, S Ismail, D Ariffin, H Ahmad 2002 Control of Ganoderma-infected palm-development of pressure injection and field applications. MPOB Information Series No. 148, MPOB TT No. 131.

  22. AS Idris, S Ismail, D Ariffin 2004 Innovative technique of sanitation for controlling Ganoderma at replanting. MPOB Information Series No. 220, MPOB, Malaysia.

  23. As’wad AWM, Sariah M, Paterson RRM, Abidin MAZ, Lima N (2011) Ergosterol analyses of oil palm seedlings and plants infected with Ganoderma. Crop Prot 30:1438–1442

    Article  Google Scholar 

  24. Chong KP (2012) An evaluation of the Ganoderma fungal colonisation using ergosterol analysis and quantification. The Planter 88(1034):311–319

    Google Scholar 

  25. Muniroh MS, Sariah M, Zainal Abidin MA, Lima N, Paterson RRM (2014) Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC. J Microbiol Methods 100:134–147. https://doi.org/10.1016/j.mimet.2014.03.005

    Article  CAS  Google Scholar 

  26. Iserte JA, Stephan BI, Goni SE, Borio CS, Ghiringhelli PD, Lozano ME (2013) Family-specific degenerate primer design: a tool to design consensus degenerated oligonucleotides. Biotechnol Res Int 2013:38364

    Article  Google Scholar 

  27. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D268. https://doi.org/10.1093/nar/gkz991

    Article  CAS  PubMed  Google Scholar 

  28. Ceita GO, Vilas-Boas LA, Castilho MS, Carazzolle MF, Pirovani CP, Selbach-Schnadelbach A, Gramacho KP, Ramos PIP, Barbosa LV, Pereira GAG, Goes-Neto A (2014) Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa. Genet Mol 37:683–693

    CAS  Google Scholar 

  29. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer T, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagappan J, Chin CF, Angel LPL, Cooper RM, May ST, Low EL (2018) Improved nucleic acid extraction protocols for Ganoderma boninense, G. miniatocinctum and G. tornatum. Biotechnol Lett 40:1541. https://doi.org/10.1007/s10529-018-2603-7

    Article  CAS  PubMed  Google Scholar 

  31. Sambrook J, Fritsch ER, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  32. Madeira F, Pearce M, Tivey A, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50(W1):W276–W279 Advance online publication. https://doi.org/10.1093/nar/gkac240

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lim F-H, Fakhrana IN, Rasid OA, Idris AS, Parveez GKA, Ho C-L, Shaharuddin NA (2014) Isolation and selection of reference genes for Ganoderma boninense gene expression study using quantitative real-time PCR (qPCR). J Oil Palm Res 26:170–181

    CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  36. Danielson PB (2002) The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3:561–597

    Article  CAS  PubMed  Google Scholar 

  37. Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90

    Article  CAS  PubMed  Google Scholar 

  38. Kim D, Lim YR, Ohk SO, Kim BJ, Chun YJ (2011) Functional expression and characterization of CYP51 from dandruff causing Malassezia globosa. FEMS Yeast Res 11:80–87

    Article  CAS  PubMed  Google Scholar 

  39. Lepesheva GI, Waterman MR (2007) Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta 1770:467–477

    Article  CAS  PubMed  Google Scholar 

  40. Revankar SG, Fua J, Rinaldi MG, Kelly SL, Kelly DE, Lamb DC, Kellera SM, Wickes BL (2004) Cloning and characterization of the lanosterol 14a-demethylase (ERG11) gene in Cryptococcus neoformans. Biochem Biophys Res Commun 324:719–728

    Article  CAS  PubMed  Google Scholar 

  41. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 50(4):S1–S5. https://doi.org/10.1016/j.ymeth.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  42. Becher R, Weihmann F, Deising HB, Wirsel SG (2011) Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics 12:52. https://doi.org/10.1186/1471-2164-12-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, Kelly SL, Kelly DE, Fraaije BA (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol 31:1793–1802. https://doi.org/10.1093/molbev/msu134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mouyna I, Henry C, Doering TL, Latge JP (2004) Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett 237:317–324

    CAS  PubMed  Google Scholar 

  45. Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283

    Article  CAS  PubMed  Google Scholar 

  46. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA 110(48):19324–19329. https://doi.org/10.1073/pnas.1306373110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. AS Idris, D Kushairi, D Ariffin, MW Basri 2006 Technique for inoculation of oil palm germinated seeds with Ganoderma. MPOB Information Series, vol 314. MPOB, Malaysia

  48. Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY (2011) A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 48(2):144–153. https://doi.org/10.1016/j.fgb.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  49. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195

    Article  CAS  PubMed  Google Scholar 

  50. Wu Y, Wu M, Wang Y, Chen Y, Gao J, Ying C (2018) ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy057

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hu C, Zhou M, Wang W, Sun X, Yarden O, Li S (2018) Abnormal ergosterol biosynthesis activates transcriptional responses to Antifungal Azoles. Front Microbiol 9:9. https://doi.org/10.3389/fmicb.2018.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management of MPOB for the approval and funding of this study. Our appreciation also goes to the Plant Pathology and Biosecurity (PPB) Unit, MPOB for providing G. boninense culture; Breeding and Tissue Culture Unit, MPOB for supplying the oil palm plantlets; Bioinformatics Unit, MPOB for the genome sequence data analysis; Transgenic Technology Group members especially Madam Siti Marlia Silong and Madam Nur Syazwana Shamsudin for their contributions in this study.

Funding

This study was supported by grant from the Malaysian Palm Oil Board (MPOB) under the project code of BD384-2009.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LFH, ROA and WMY. The first draft of the manuscript was written by LFH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fook-Hwa Lim or Mui-Yun Wong.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 768.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, FH., Rasid, O.A., Idris, A.S. et al. Induced expression of Ganoderma boninense Lanosterol 14α-Demethylase (ERG11) during interaction with oil palm. Mol Biol Rep 50, 2367–2379 (2023). https://doi.org/10.1007/s11033-022-08131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08131-4

Keywords

Navigation