Skip to main content

Advertisement

Log in

Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Azoles have been applied widely to combat pathogenic fungi in medicine and agriculture and, consequently, loss of efficacy has occurred in populations of some species. Often, but not always, resistance was found to result from amino acid substitutions in the molecular target of azoles, 14α-sterol demethylase (CYP51 syn. ERG11). This review summarizes CYP51 function, evolution, and structure. Furthermore, we compare the occurrence and contribution of CYP51 substitutions to azole resistance in clinical and field isolates of important fungal pathogens. Although no crystal structure is available yet for any fungal CYP51, homology modeling using structures from other origins as template allowed deducing models for fungal orthologs. These models served to map amino acid changes known from clinical and field isolates. We conclude with describing the potential consequences of these changes on the topology of the protein to explain CYP51-based azole resistance. Knowledge gained from molecular modeling and resistance research will help to develop novel azole structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe F, Usui K, Hiraki T (2009) Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae. Biochemistry 48:8494–8504

    Article  CAS  Google Scholar 

  • Albarrag AM, Anderson MJ, Howard SJ, Robson GD, Warn PA, Sanglard D, Denning DW (2011) Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother 55:5113–5121

    Article  CAS  Google Scholar 

  • Albertini C, Gredt M, Leroux P (2003) Polymorphism of 14alpha-demethylase gene (CYP51) in the cereal eyespot fungi Tapesia acuformis and Tapesia yallundae. Eur J Plant Pathol 109:117–128

    Article  CAS  Google Scholar 

  • Alcazar-Fuoli L, Mellado E, Cuenca-Estrella M, Sanglard D (2011) Probing the role of point mutations in the cyp51A gene from Aspergillus fumigatus in the model yeast Saccharomyces cerevisiae. Med Mycol 49:276–284

    Article  CAS  Google Scholar 

  • Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P (2011) Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 6:e21239

    Article  CAS  Google Scholar 

  • Aoyama Y (2005) Recent progress in the CYP51 research focusing on its unique evolutionary and functional characteristics as a diversozyme P450. Front Biosci 10:1546–1557

    Article  CAS  Google Scholar 

  • Aoyama Y, Noshiro M, Gotoh O, Imaoka S, Funae Y, Kurosawa N, Horiuchi T, Yoshida Y (1996) Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species. J Biochem 119:926–933

    Article  CAS  Google Scholar 

  • Aoyama Y, Horiuchi T, Gotoh O, Noshiro M, Yoshida Y (1998) CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51. J Biochem 124:694–696

    Article  CAS  Google Scholar 

  • Bean TP, Cools HJ, Lucas JA, Hawkins ND, Ward JL, Shaw MW, Fraaije BA (2009) Sterol content analysis suggests altered eburicol 14alpha-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides. FEMS Microbiol Lett 296:266–273

    Article  CAS  Google Scholar 

  • Becher R, Weihmann F, Deising HB, Wirsel SGR (2011) Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics 12:52

    Article  CAS  Google Scholar 

  • Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 96:8937–8942

    Article  CAS  Google Scholar 

  • Bellamine A, Lepesheva GI, Waterman MR (2004) Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. J Lipid Res 45:2000–2007

    Article  CAS  Google Scholar 

  • Boscott PE, Grant GH (1994) Modeling cytochrome P450 14-alpha demethylase (Candida albicans) from p450cam. J Mol Graph 12:185–192

    Article  CAS  Google Scholar 

  • Brunner PC, Stefanato FL, McDonald BA (2008) Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement. Mol Plant Pathol 9:305–316

    Article  CAS  Google Scholar 

  • Canas-Gutierrez GP, Angarita-Velasquez MJ, Restrepo-Florez JM, Rodriguez P, Moreno CX, Arango R (2009) Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag Sci 65:892–899

    Article  CAS  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321

    Article  CAS  Google Scholar 

  • Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM (2004) Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48:2124–2131

    Article  CAS  Google Scholar 

  • Chen CK, Leung SSF, Guilbert C, Jacobson MP, McKerrow JH, Podust LM (2010) Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Neglect Trop Dis 4:e651

    Article  CAS  Google Scholar 

  • Clark TA, Hajjeh RA (2002) Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis 15:569–574

    Article  Google Scholar 

  • Cools HJ, Parker JE, Kelly DE, Lucas JA, Fraaije BA, Kelly SL (2010) Heterologous expression of mutated eburicol 14 alpha-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Appl Environ Microb 76:2866–2872

    Article  CAS  Google Scholar 

  • Cools HJ, Mullins JG, Fraaije BA, Parker JE, Kelly DE, Lucas JA, Kelly SL (2011) Impact of recently emerged sterol 14alpha-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Appl Environ Microbiol 77:3830–3837

    Article  CAS  Google Scholar 

  • Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA (2012) Over-expression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Manag Sci. doi:10.1002/ps.3263

  • Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, D’Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6:1889–1904

    Article  CAS  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  Google Scholar 

  • De Nollin S, Van Belle H, Goossens F, Thone F, Borgers M (1977) Cytochemical and biochemical studies of yeasts after in vitro exposure to miconazole. Antimicrob Agents Chemother 11:500–513

    Article  Google Scholar 

  • De Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, Zwiers LH (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62:195–207

    Article  CAS  Google Scholar 

  • Délye C, Laigret F, Corio-Costet MF (1997a) A mutation in the 14alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2966–2970

    Google Scholar 

  • Délye C, Laigret F, Corio-Costet MF (1997b) RAPD analysis provides insight into the biology and epidemiology of Uncinula necator. Phytopathology 87:670–677

    Article  Google Scholar 

  • Délye C, Bousset L, Corio-Costet MF (1998) PCR cloning and detection of point mutations in the eburicol 14alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Curr Genet 34:399–403

    Article  Google Scholar 

  • Dufour MC, Fontaine S, Montarry J, Corio-Costet MF (2011) Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays. Pest Manag Sci 67:60–69

    Article  CAS  Google Scholar 

  • Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhäuser J, Rogers PD (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7:1180–1190

    Article  CAS  Google Scholar 

  • Fraczek MG, Bromley M, Bowyer P (2011) An improved model of the Aspergillus fumigatus CYP51A protein. Antimicrob Agents Chemother 55:2483–2486

    Article  CAS  Google Scholar 

  • Friese G, Discher T, Fussle R, Schmalreck A, Lohmeyer J (2001) Development of azole resistance during fluconazole maintenance therapy for AIDS-associated cryptococcal disease. AIDS 15:2344–2345

    Article  CAS  Google Scholar 

  • Fukuoka T, Johnston DA, Winslow CA, de Groot MJ, Burt C, Hitchcock CA, Filler SG (2003) Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother 47:1213–1219

    Article  CAS  Google Scholar 

  • Garcia-Effron G, Mellado E, Gomez-Lopez A, Alcazar-Fuoli L, Cuenca-Estrella A, Rodriguez-Tudela JL (2005) Differences in interactions between azole drugs related to modifications in the 14-alpha sterol demethylase gene (Cyp51A) of Aspergillus fumigatus. Antimicrob Agents Chemother 49:2119–2121

    Article  CAS  Google Scholar 

  • Ghosoph JM, Schmidt LS, Margosan DA, Smilanick JL (2007) Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biol Technol 44:9–18

    Article  CAS  Google Scholar 

  • Gollapudy R, Ajmani S, Kulkarni SA (2004) Modeling and interactions of Aspergillus fumigatus lanosterol 14-alpha demethylase ‘A’ with azole antifungals. Bioorg Med Chem 12:2937–2950

    Article  CAS  Google Scholar 

  • Gulshan K, Moye-Rowley WS (2007) Multidrug resistance in fungi. Eukaryot Cell 6:1933–1942

    Article  CAS  Google Scholar 

  • Hamamoto H, Hasegawa K, Nakaune R, Lee YJ, Makizumi Y, Akutsu K, Hibi T (2000) Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol 66:3421–3426

    Article  CAS  Google Scholar 

  • Han R, Zhang JH, Li SX, Cao SF, Geng H, Yuan YZ, Xiao WJ, Liu SH, Liu DL (2010) Homology modeling and screening of new 14 alpha-demethylase inhibitor (DMI) fungicides based on optimized expression of CYP51 from Ustilago maydis in Escherichia coli. J Agric Food Chem 58:12810–12816

    Article  CAS  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta Gen Subj 1770:330–344

    Article  CAS  Google Scholar 

  • Hargrove TY, Wawrzak Z, Liu JL, Nes WD, Waterman MR, Lepesheva GI (2011) Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. J Biol Chem 286:26838–26848

    Article  CAS  Google Scholar 

  • Howard SJ, Arendrup MC (2011) Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol 49:S90–S95

    Article  CAS  Google Scholar 

  • Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, Laverdiere M, Arendrup MC, Perlin DS, Denning DW (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 15:1068–1076

    Article  CAS  Google Scholar 

  • Hu WQ, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin CL, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:e24

    Article  CAS  Google Scholar 

  • Ito A, Sudo K, Kumazawa S, Kikuchi M, Chuman H (2005) Three-dimensional modeling of cytochrome P450 14 alpha-demethylase (CYP51) and interaction of azole fungicide metconazole with CYP51. In: Clark JM, Ohkawa H (eds) New discoveries in agrochemicals. Amer Chemical Soc, Washington, pp 142–150

    Google Scholar 

  • Ji HT, Zhang WN, Zhou YJ, Zhang M, Zhu J, Song YL, Lu J (2000) A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 43:2493–2505

    Article  CAS  Google Scholar 

  • Kakeya H, Miyazaki Y, Miyazaki H, Nyswaner K, Grimberg B, Bennett JE (2000) Genetic analysis of azole resistance in the Darlington strain of Candida albicans. Antimicrob Agents Chemother 44:2985–2990

    Article  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE (1995) Mode of action and resistance to azole antifungals associated with the formation of 14-alpha-methylergosta-8,24(28)-dien-3-beta,6-alpha-diol. Biochem Biophys Res Commun 207:910–915

    Article  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Kelly DE (1999) Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol Lett 180:171–175

    CAS  Google Scholar 

  • Kislev ME (1982) Stem rust of wheat 3300 years old found in Israel. Science 216:993–994

    Article  CAS  Google Scholar 

  • Kronvall G, Karlsson I (2001) Fluconazole and voriconazole multidisk testing of Candida species for disk test calibration and MIC estimation. J Clin Microbiol 39:1422–1428

    Article  CAS  Google Scholar 

  • Kudo M, Ohi A, Aoyama Y, Nitahara Y, Chung SK, Yoshida Y (2005) Effects of Y132H and F145L substitutions on the activity, azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450 (CYP51): A live example showing the selection of altered P450 through interaction with environmental compounds. J Biochem 137:625–632

    Article  CAS  Google Scholar 

  • Kullberg BJ, Lashof A (2002) Epidemiology of opportunistic invasive mycoses. Eur J Med Res 7:183–191

    CAS  Google Scholar 

  • Lamb DC, Kelly DE, Schunck WH, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, Kelly SL (1997) The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 272:5682–5688

    Article  CAS  Google Scholar 

  • Lamb DC, Kelly DE, White TC, Kelly SL (2000) The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 44:63–67

    Article  CAS  Google Scholar 

  • Lamb DC, Waterman MR, Kelly SL, Guengerich FP (2007) Cytochromes P450 and drug discovery. Curr Opin Biotechnol 18:504–512

    Article  CAS  Google Scholar 

  • Lepesheva GI, Waterman MR (2004) CYP51—the omnipotent P450. Mol Cell Endocrinol 215:165–170

    Article  CAS  Google Scholar 

  • Lepesheva GI, Waterman MR (2007) Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subjects 1770:467–477

    Article  CAS  Google Scholar 

  • Lepesheva GI, Waterman MR (2011) Structural basis for conservation in the CYP51 family. Biochim Biophys Acta Proteins Proteom 1814:88–93

    Article  CAS  Google Scholar 

  • Lepesheva GI, Hargrove TY, Anderson S, Kleshchenko Y, Furtak V, Wawrzak Z, Villalta F, Waterman MR (2010a) Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem 285:25582–25590

    Article  CAS  Google Scholar 

  • Lepesheva GI, Park HW, Hargrove TY, Vanhollebeke B, Wawrzak Z, Harp JM, Sundaramoorthy M, Nes WD, Pays E, Chaudhuri M, Villalta F, Waterman MR (2010b) Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections. J Biol Chem 285:1773–1780

    Article  CAS  Google Scholar 

  • Leroux P, Walker AS (2011) Multiple mechanisms account for resistance to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 67:44–59

    Article  CAS  Google Scholar 

  • Leroux P, Albertini C, Gautier A, Gredt M, Walker AS (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 63:688–698

    Article  CAS  Google Scholar 

  • Lewis DFV, Wiseman A, Tarbit MH (1999) Molecular modelling of lanosterol 14alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure–activity relationships (QSARs) within two related series of antifungal azole derivatives. J Enzym Inhib 14:175–192

    Article  CAS  Google Scholar 

  • Li X, Brown N, Chau AS, Lopez-Ribot JL, Ruesga MT, Quindos G, Mendrick CA, Hare RS, Loebenberg D, DiDomenico B, McNicholas PM (2004) Changes in susceptibility to posaconazole in clinical isolates of Candida albicans. J Antimicrob Chemother 53:74–80

    Article  CAS  Google Scholar 

  • Li SX, Zhang JH, Cao SF, Han R, Yuan YZ, Yang JK, Yan YJ, Liu DL (2011) Homology modeling, molecular docking and spectra assay studies of sterol 14alpha-demethylase from Penicillium digitatum. Biotechnol Lett 33:2005–2011

    Article  CAS  Google Scholar 

  • Liu X, Jiang J, Shao J, Yin Y, Ma Z (2010) Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Appl Microbiol Biotechnol 85:1105–1114

    Article  CAS  Google Scholar 

  • Liu X, Yu F, Schnabel G, Wu J, Wang Z, Ma Z (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol 48:113–123

    Article  CAS  Google Scholar 

  • Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA (2011) Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 55:4465–4468

    Article  CAS  Google Scholar 

  • Luo CX, Schnabel G (2008a) Adaptation to fungicides in Monilinia fructicola isolates with different fungicide resistance phenotypes. Phytopathology 98:230–238

    Article  CAS  Google Scholar 

  • Luo CX, Schnabel G (2008b) The cytochrome P450 lanosterol 14alpha-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl Environ Microbiol 74:359–366

    Article  CAS  Google Scholar 

  • Ma ZH, Proffer TJ, Jacobs JL, Sundin GW (2006) Overexpression of the 14alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol 72:2581–2585

    Article  CAS  Google Scholar 

  • Malani AN, Kauffman CA (2007) Changing epidemiology of rare mould infections—implications for therapy. Drugs 67:1803–1812

    Article  CAS  Google Scholar 

  • Marichal P, VandenBossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, VanBroeckhoven C, Fay S, MoseLarsen P (1997) Molecular-biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237

    CAS  Google Scholar 

  • Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FCS, Odds FC, Vanden Bossche H (1999) Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713

    CAS  Google Scholar 

  • Martel CM, Parker JE, Warrilow AG, Rolley NJ, Kelly SL, Kelly DE (2010) Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (sterol 14alpha-demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B. Antimicrob Agents Chemother 54:4920–4923

    Article  CAS  Google Scholar 

  • Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438

    Article  CAS  Google Scholar 

  • Mellado E, Alcazar-Fuoli L, Garcia-Effron G, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL (2006) New resistance mechanisms to azole drugs in Aspergillus fumigatus and emergence of antifungal drugs-resistant A. fumigatus atypical strains. Med Mycol 44:S367–S371

    Article  CAS  Google Scholar 

  • Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Melchers WJG, Verweij PE, Cuenca-Estrella A, Rodriguez-Tudela JL (2007) A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 51:1897–1904

    Article  CAS  Google Scholar 

  • Mondon P, Petter R, Amalfitano G, Luzzati R, Concia E, Polacheck I, Kwon-Chung KJ (1999) Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob Agents Chemother 43:1856–1861

    CAS  Google Scholar 

  • Morio F, Loge C, Besse B, Hennequin C, Le Pape P (2010) Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66:373–384

    Article  CAS  Google Scholar 

  • Morris GM, Richards WG (1991) Molecular modeling of the sterol C-14 demethylase of Saccharomyces cerevisiae. Biochem Soc Trans 19:793–795

    CAS  Google Scholar 

  • Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47:94–106

    Article  CAS  Google Scholar 

  • Mortensen KL, Jensen RH, Johansen HK, Skov M, Pressler T, Howard SJ, Leatherbarrow H, Mellado E, Arendrup MC (2011) Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol 49:2243–2251

    Article  Google Scholar 

  • Mullins JGL, Parker JE, Cools HJ, Togawa RC, Lucas JA, Fraaije BA, Kelly DE, Kelly SL (2011) Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One 6:e20973

    Article  CAS  Google Scholar 

  • Nikou D, Malandrakis A, Konstantakaki M, Vontas J, Markoglou A, Ziogas B (2009) Molecular characterization and detection of overexpressed C-14 alpha-demethylase-based DMI resistance in Cercospora beticola field isolates. Pest Biochem Physiol 95:18–27

    Article  CAS  Google Scholar 

  • Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL (2010) Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 51:561–570

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43

    Article  Google Scholar 

  • Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–3154

    Article  CAS  Google Scholar 

  • Park HG, Lee IS, Chun YJ, Yun CH, Johnston JB, de Montellano PRO, Kim D (2011) Heterologous expression and characterization of the sterol 14alpha-demethylase CYP51F1 from Candida albicans. Arch Biochem Biophys 509:9–15

    Article  CAS  Google Scholar 

  • Perea S, Lopez-Ribot JL, Kirkpatrick WR, McAtee RK, Santillan RA, Martinez M, Calabrese D, Sanglard D, Patterson TF (2001) Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45:2676–2684

    Article  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53

    Article  Google Scholar 

  • Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ (2011) Wild-type MIC distributions and epidemiological cutoff values for posaconazole and voriconazole and Candida spp. as determined by 24-hour CLSI broth microdilution. J Clin Microbiol 49:630–637

    Article  CAS  Google Scholar 

  • Podust LM, Poulos TL, Waterman MR (2001a) Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 98:3068–3073

    Article  CAS  Google Scholar 

  • Podust LM, Stojan J, Poulos TL, Waterman MR (2001b) Substrate recognition sites in 14alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Biochem 87:227–235

    Article  CAS  Google Scholar 

  • Posteraro B, Sanguinetti M, Sanglard D, La Sorda M, Boccia S, Romano L, Morace G, Fadda G (2003) Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 47:357–371

    Article  CAS  Google Scholar 

  • Proffer TJ, Berardi R, Ma Z, Nugent JE, Ehret GR, McManus PS, Jones AL, Sundin GW (2006) Occurrence, distribution, and polymerase chain reaction-based detection of resistance to sterol demethylation inhibitor fungicides in populations of Blumeriella jaapii in Michigan. Phytopathology 96:709–717

    Article  CAS  Google Scholar 

  • Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56:i5–i11

    Article  CAS  Google Scholar 

  • Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, Cuenca-Estrella M, Davel G, Rodriguez-Tudela JL (2003) G484S amino acid substitution in lanosterol 14-alpha demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother 47:3653–3656

    Article  CAS  Google Scholar 

  • Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M (2008) Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 52:2468–2472

    Article  CAS  Google Scholar 

  • Rupp B, Raub S, Marian C, Holtje HD (2005) Molecular design of two sterol 14 alpha-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole. J Comput Aided Mol Des 19:149–163

    Article  CAS  Google Scholar 

  • Sanchez-Torres P, Tuset JJ (2011) Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biol Technol 59:159–165

    Article  CAS  Google Scholar 

  • Sanglard D, Ischer F, Koymans L, Bille J (1998) Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42:241–253

    Article  CAS  Google Scholar 

  • Schnabel G, Jones AL (2001) The 14alpha-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91:102–110

    Article  CAS  Google Scholar 

  • Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J (2008) An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol 68:624–641

    Article  CAS  Google Scholar 

  • Sheng CQ, Miao ZY, Ji HT, Yao JZ, Wang WY, Che XY, Dong GQ, Lu JG, Guo W, Zhang WNA (2009) Three-dimensional model of lanosterol 14alpha-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding. Antimicrob Agents Chemother 53:3487–3495

    Article  CAS  Google Scholar 

  • Shimokawa O, Nakayama H (1992) Increased sensitivity of Candida albicans cells accumulating 14-alpha-methylated sterols to active oxygen—possible relevance to in vivo efficacies of azole antifungal agents. Antimicrob Agents Chemother 36:1626–1629

    Article  CAS  Google Scholar 

  • Sionov E, Chang YC, Garraffo HM, Kwon-Chung KJ (2009) Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 53:2804–2815

    Article  CAS  Google Scholar 

  • Sionov E, Lee H, Chang YC, Kwon-Chung KJ (2010) Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6:e1000848

    Article  CAS  Google Scholar 

  • Sionov E, Chang YC, Garraffo HM, Dolan MA, Ghannoum MA, Kwon-Chung KJ (2012) Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother. doi:10.1128/AAC.05502-11, ahead of print

  • Snelders E, van der Lee HA, Kuijpers J, Rijs AJ, Varga J, Samson RA, Mellado E, Donders AR, Melchers WJ, Verweij PE (2008) Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5:e219

    Article  CAS  Google Scholar 

  • Snelders E, Huis In ‘t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE (2009) Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75:4053–4057

    Article  CAS  Google Scholar 

  • Snelders E, Karawajczyk A, Schaftenaar G, Verweij PE, Melchers WJG (2010) Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother 54:2425–2430

    Article  CAS  Google Scholar 

  • Stammler G, Carstensen M, Koch A, Semar M, Strobel D, Schlehuber S (2008) Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole-sensitivity and -field efficacy. Crop Prot 27:1448–1456

    Article  CAS  Google Scholar 

  • Stammler G, Cordero J, Koch A, Semar M, Schlehuber S (2009) Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Prot 28:891–897

    Article  CAS  Google Scholar 

  • Strushkevich N, Usanov SA, Park HW (2010) Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 397:1067–1078

    Article  CAS  Google Scholar 

  • Sun X, Wang J, Feng D, Ma Z, Li H (2011) PdCYP51B, a new putative sterol 14alpha-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Appl Microbiol Biotechnol 91:1107–1119

    Article  CAS  Google Scholar 

  • Vanden Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol 1:313–351

    Article  CAS  Google Scholar 

  • Vanden Bossche H, Koymans L (1998) Cytochromes P450 in fungi. Mycoses 41:32–38

    Article  CAS  Google Scholar 

  • Vanden Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W (1984) Molecular-basis for the antimycotic and antibacterial activity of n-substituted imidazoles and triazoles—the inhibition of isoprenoid biosynthesis. Pestic Sci 15:188–198

    Article  Google Scholar 

  • Vanden Bossche H, Marichal P, Gorrens J, Bellens D, Verhoeven H, Coene MC, Lauwers W, Janssen PAJ (1987) Interaction of azole derivatives with cytochrome P-450 isozymes in yeast, fungi, plants and mammalian-cells. Pestic Sci 21:289–306

    Article  CAS  Google Scholar 

  • Venkateswarlu K, Taylor M, Manning NJ, Rinaldi MG, Kelly SL (1997) Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 41:748–751

    CAS  Google Scholar 

  • Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WJG (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9:789–795

    Article  CAS  Google Scholar 

  • Warrilow AG, Martel CM, Parker JE, Melo N, Lamb DC, Nes WD, Kelly DE, Kelly SL (2010) Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 54:4235–4245

    Article  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1, reviews3003.3001-3003.3009

  • Wheat J, Marichal P, VandenBossche H, LeMonte A, Connolly P (1997) Hypothesis on the mechanism of resistance to fluconazole in Histoplasma capsulatum. Antimicrob Agents Chemother 41:410–414

    CAS  Google Scholar 

  • Wheat LJ, Connolly P, Smedema M, Brizendine E, Hafner R (2001) Emergence of resistance to fluconazole as a cause of failure during treatment of histoplasmosis in patients with acquired immunodeficiency disease syndrome. Clin Infect Dis 33:1910–1913

    Article  CAS  Google Scholar 

  • Wheat LJ, Connolly P, Smedema M, Durkin M, Brizendine E, Mann P, Patel R, McNicholas PM, Goldman M (2006) Activity of newer triazoles against Histoplasma capsulatum from patients with AIDS who failed fluconazole. J Antimicrob Chemother 57:1235–1239

    Article  CAS  Google Scholar 

  • White TC (1997) The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother 41:1488–1494

    CAS  Google Scholar 

  • Wyand RA, Brown JKM (2005) Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet Biol 42:726–735

    Article  CAS  Google Scholar 

  • Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM (2004) Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 48:568–574

    Article  CAS  Google Scholar 

  • Yan LY, Yang QQ, Zhou YL, Duan XY, Ma ZH (2009) A real-time PCR assay for quantification of the Y136F allele in the CYP51 gene associated with Blumeria graminis f. sp. tritici resistance to sterol demethylase inhibitors. Crop Prot 28:376–380

    Article  CAS  Google Scholar 

  • Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY (2011) A sterol 14alpha-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 48:144–153

    Article  CAS  Google Scholar 

  • Yang JY, Zhang QY, Liao MJ, Xiao M, Xiao WJ, Yang S, Wan N (2009) Expression and homology modelling of sterol 14alpha-demethylase of Magnaporthe grisea and its interaction with azoles. Pest Manag Sci 65:260–265

    Article  CAS  Google Scholar 

  • Yoshida Y, Aoyama Y (1987) Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes. Biochem Pharmacol 36:229–235

    Article  CAS  Google Scholar 

  • Zhao L, Liu DL, Zhang QY, Zhang S, Wan J, Xiao WJ (2007) Expression and homology modeling of sterol 14alpha-demethylase from Penicillium digitatum. FEMS Microbiol Lett 277:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work received financial support from the Deutsche Forschungsgemeinschaft (DFG), the Interdisziplinäres Zentrum für Nutzpflanzenforschung, Martin-Luther-Universität Halle-Wittenberg (IZN), and BAYER CropScience GmbH. We gratefully acknowledge H. B. Deising, Director of the IZN, for his support and advice. In addition, we thank unknown reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. R. Wirsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, R., Wirsel, S.G.R. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 95, 825–840 (2012). https://doi.org/10.1007/s00253-012-4195-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4195-9

Keywords

Navigation