Skip to main content

Advertisement

Log in

Analyses of P16INK4a gene promoter methylation relative to molecular, demographic and clinical parameters characteristics in non-small cell lung cancer patients: A pilot study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to examine the methylation status of p16INK4a promoter region in non small cell lung cancer (NSCLC) patients and their associations with single nucleotide polymorphisms (SNPs) of the epidermal growth factor receptor (EGFR) gene, as well as with demographic or clinical characteristics.

Methods

Formalin-fixed and paraffin-embedded (FFPE) DNA samples extracted from 22 NSCLC patients were analyzed with methylation-specific polymerase chain reaction (PCR) method to obtain promoter methylation profile. The same cohort was genotyped for − 216G > T, -191 C > A, and 181,946 C > T EGFR SNPs.

Results

There was a significant association between methylated p16INK4a in patients prior therapy (p = 0.017) since a significantly higher frequency of methylated p16INK4a was detected in these patients (40.9%) in comparison to frequency in patients after therapy (31.8%). Also, a higher frequency of methylated p16INK4a was detected among patients with leucopenia (p = 0.056). No associations were observed between the methylation status of the p16INK4a promoter region and EGFR SNPs or other clinical and demographic data in this cohort.

Conclusion

High frequency of methylation of the p16INK4a gene promoter was observed in NSCLC patients prior therapy and with leucopenia that can indicate their significance related to advanced clinical stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All patient data is fully protected according to the principles of ethics and secrecy.

References

  1. Siegel RL, Miller KD, Cancer statistics (2020) 2020;70(1):7–30

  2. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M et al (2018) Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387

    Article  CAS  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  4. Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K et al (2019) Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manage Res 11:943–953

    Article  CAS  Google Scholar 

  5. Pinto JA, Vallejos CS, Raez LE, Mas LA, Ruiz R, Torres-Roman JS et al (2018) ;3(3):e000344

  6. Lassen U, Osterlind K, Hansen M, Dombernowsky P, Bergman B, Hansen HH (1995) Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18 + years–an analysis of 1,714 consecutive patients. J Clin oncology: official J Am Soc Clin Oncol 13(5):1215–1220

    Article  CAS  Google Scholar 

  7. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic proceedings. ;83(5):584 – 94

  8. Xia W, Yu X, Mao Q, Xia W, Wang A, Dong G et al (2017) Improvement of survival for non-small cell lung cancer over time. OncoTargets and therapy 10:4295–4303

    Article  Google Scholar 

  9. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  CAS  Google Scholar 

  10. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy, vol 304. Science, New York, NY, pp 1497–1500. 5676

    Google Scholar 

  11. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101(36):13306–13311

    Article  CAS  Google Scholar 

  12. Besse B, Adjei A, Baas P, Meldgaard P, Nicolson M, Paz-Ares L et al (2014) 2nd ESMO Consensus Conference on Lung Cancer: non-small-cell lung cancer first-line/second and further lines of treatment in advanced disease. Ann Oncol. ;25(8):1475-84

  13. Amador ML, Oppenheimer D, Perea S, Maitra A, Cusatis G, Iacobuzio-Donahue C et al (2004) An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res 64(24):9139–9143

    Article  CAS  Google Scholar 

  14. Liu G, Gurubhagavatula S, Zhou W, Wang Z, Yeap BY, Asomaning K et al (2008) Epidermal growth factor receptor polymorphisms and clinical outcomes in non-small-cell lung cancer patients treated with gefitinib. Pharmacogenomics J 8(2):129–138

    Article  CAS  Google Scholar 

  15. Liu G, Cheng D, Ding K, Le Maitre A, Liu N, Patel D et al (2012) Pharmacogenetic analysis of BR.21, a placebo-controlled randomized phase III clinical trial of erlotinib in advanced non-small cell lung cancer. J Thorac oncology: official publication Int Association Study Lung Cancer 7(2):316–322

    Article  CAS  Google Scholar 

  16. Jung M, Cho BC, Lee CH, Park HS, Kang YA, Kim SK et al (2012) EGFR polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI. Yonsei Med J 53(6):1128–1135

    Article  Google Scholar 

  17. Jurišić V, Obradovic J, Pavlović S, Djordjevic N (2018) Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation. Anal Cell Pathol (Amst). ; 14;2018:6192187. doi: https://doi.org/10.1155/2018/6192187

  18. Nomura M, Shigematsu H, Li L, Suzuki M, Takahashi T, Estess P et al (2007) Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Med 4(4):e125

    Article  Google Scholar 

  19. Ma F, Sun T, Shi Y, Yu D, Tan W, Yang M et al (2009) Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell lung cancer patients treated with Gefitinib. Lung cancer (Amsterdam Netherlands) 66(1):114–119

    Article  Google Scholar 

  20. Yuan F, Cao X, Zhang YH, Chen L, Huang T, Li Z et al (2022) Identification of Novel Lung Cancer Driver Genes Connecting Different Omics Levels With a Heat Diffusion Algorithm. Front cell Dev biology 10:825272

    Article  Google Scholar 

  21. Zhou C, Hu H, Zheng Z, Chen C, Li Y, Li B et al (2019) Association between GPX3 promoter methylation and malignant tumors: A meta-analysis. Pathol Res Pract 215(7):152443

    Article  CAS  Google Scholar 

  22. Zhang Z, Xin S, Gao M, Cai Y (2017) Promoter hypermethylation of MGMT gene may contribute to the pathogenesis of gastric cancer: A PRISMA-compliant meta-analysis. Medicine 96(17):e6708

    Article  CAS  Google Scholar 

  23. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E et al (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95(20):11891–11896

    Article  CAS  Google Scholar 

  24. Li X, Mao W, Guo D, Xu H (2019) Clinicopathological Significance and Diagnostic Value of DLEC1 Hypermethylation in Lung Cancer: A Meta-analysis. J Nippon Med School = Nippon Ika Daigaku zasshi 86(2):62–69

    Article  CAS  Google Scholar 

  25. Nikolic N, Carkic J, Ilic Dimitrijevic I, Eljabo N, Radunovic M, Anicic B et al (2018) P14 methylation: an epigenetic signature of salivary gland mucoepidermoid carcinoma in the Serbian population. Oral surgery, oral medicine, oral pathology and oral radiology. 125:52–581

  26. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J et al (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA 114(28):7414–7419

    Article  CAS  Google Scholar 

  27. Gu J, Wen Y, Zhu S, Hua F, Zhao H, Xu H et al (2013) Association between P(16INK4a) promoter methylation and non-small cell lung cancer: a meta-analysis. PLoS ONE 8(4):e60107

    Article  CAS  Google Scholar 

  28. Wang BH, Li YY, Han JZ, Zhou LY, Lv YQ, Zhang HL et al (2017) Gene methylation as a powerful biomarker for detection and screening of non-small cell lung cancer in blood. Oncotarget 8(19):31692–31704

    Article  Google Scholar 

  29. Tuo L, Sha S, Huayu Z, Du K (2018) P16(INK4a) gene promoter methylation as a biomarker for the diagnosis of non-small cell lung cancer: An updated meta-analysis. Thorac cancer 9(8):1032–1040

    Article  CAS  Google Scholar 

  30. Xing XB, Cai WB, Luo L, Liu LS, Shi HJ, Chen MH (2013) The Prognostic Value of p16 Hypermethylation in Cancer: A Meta-Analysis. PLoS ONE 8(6):e66587

    Article  CAS  Google Scholar 

  31. Jurisic V, Vukovic V, Obradovic J, Gulyaeva LF, Kushlinskii NE, Djordjević (2020) N:. EGFR Polymorphism and Survival of NSCLC Patients Treated with TKIs: A Systematic Review and Meta-Analysis. J Oncol 2020:1973241

    Article  Google Scholar 

  32. Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, Asamura H et al (2014) The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac oncology: official publication Int Association Study Lung Cancer 9(11):1618–1624

    Article  CAS  Google Scholar 

  33. Obradović J, Djordjević N, Tošic N, Mrdjanović J, Stanković B, Stanić J et al (2016) Frequencies of EGFR single nucleotide polymorphisms in non-small cell lung cancer patients and healthy individuals in the Republic of Serbia: a preliminary study. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 37(8):10479–10486

    Article  Google Scholar 

  34. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826

    Article  CAS  Google Scholar 

  35. Obradovic J, Jurisic V, Tosic N, Mrdjanovic J, Perin B, Pavlovic S et al (2013) Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence. J Clin Lab Anal 27(6):487–493

    Article  CAS  Google Scholar 

  36. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    Article  CAS  Google Scholar 

  37. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–d12

    Article  CAS  Google Scholar 

  38. Billard-Sandu C, Tao YG, Sablin MP, Dumitrescu G, Billard D, Deutsch E (2020) CDK4/6 inhibitors in P16/HPV16-negative squamous cell carcinoma of the head and neck. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology -. Head and Neck Surgery 277(5):1273–1280

    Google Scholar 

  39. Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M, Pakzad I, Salehiniya H (2015) The incidence and mortality of lung cancer and their relationship to development in Asia. Translational lung cancer research 4(6):763–774

    Google Scholar 

  40. Soh J, Toyooka S, Matsuo K, Yamamoto H, Wistuba II, Lam S et al (2015) Ethnicity affects EGFR and KRAS gene alterations of lung adenocarcinoma. Oncol Lett 10(3):1775–1782

    Article  CAS  Google Scholar 

  41. Wei B, Wu F, Xing W, Sun H, Yan C, Zhao C et al (2021) A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer. Sci Rep 11(1):16782

    Article  CAS  Google Scholar 

  42. Manser R, Lethaby A, Irving LB, Stone C, Byrnes G, Abramson MJ et al (2013) Screening for lung cancer. Cochrane Database Syst Rev 2013(6):Cd001991

    Google Scholar 

  43. Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F et al (2013) Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 368(21):1980–1991

    Article  Google Scholar 

  44. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Translational lung cancer research 5(3):288–300

    Article  CAS  Google Scholar 

  45. Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP (2012) DNA methylation biomarkers for lung cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 33(2):287–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N/A.

Funding

This work was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Project No. 175056 until 2019, then under Agreement No. 451-03-68/2022-14/200378.

Author information

Authors and Affiliations

Authors

Contributions

VJ, and JM designed the study. JO and NN performed the experiments. JJ and BP collected the clinical data. JO analyzed the data. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Vladimir Jurisic.

Ethics declarations

Ethics approval and consent to participate

All procedures were operated according with the NIH Guide for the Care. The local ethics committee of the Institute for Lung Diseases of Vojvodina for medical issues approved the research.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurisic, V., Obradovic, J., Nikolic, N. et al. Analyses of P16INK4a gene promoter methylation relative to molecular, demographic and clinical parameters characteristics in non-small cell lung cancer patients: A pilot study. Mol Biol Rep 50, 971–979 (2023). https://doi.org/10.1007/s11033-022-07982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07982-1

Keywords

Navigation