Skip to main content

Advertisement

Log in

ABCC6P1 pseudogene induces ABCC6 upregulation and multidrug resistance in breast cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The elevated drug efflux by ABC transports has been considered the primary mechanism of drug resistance in cancer. Recently, non-coding RNAs, such as pseudogenes, have been proposed to be involved in transporter-mediated drug resistance in cancer. The human genome has 22 ABC transporter pseudogenes. Among these pseudogenes, ABCC6P1 has co-expression with its ancestral gene in various human tissues. In the present study, we assessed the effect of ABCC6P1 pseudogene overexpression on ABCC6 expression and drug resistance.

Methods and results

The ABCC6P1 was transfected into the MCF-7 and MDA-MB-231 cells. In ABCC6P1-overexpressing cells, the ABCC6 level significantly increased. The results of cell treatment with doxorubicin, 5-fluorouracil, cisplatin, and paclitaxel showed that the survival of ABCC6P1-overexpressing cells was higher than normal cells. Furthermore, uptake of doxorubicin was lower in ABCC6P1-overexpressing cells.

Conclusions

In conclusion, our results show that overexpression of ABCC6P1 pseudogene induces the drug resistance phenotype, possibly through activation of the ancestral gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE (2021) Jemal a cancer statistics. CA 71(1):7–33

    PubMed  Google Scholar 

  2. Kern R, Correa SC, Scandolara TB, Carla da Silva J, Pires BR, Panis C (2020) Current advances in the diagnosis and personalized treatment of breast cancer: lessons from tumor biology. Pers Med 17(05):399–420

    Article  CAS  Google Scholar 

  3. Bortolozzi R, Luraghi A, Mattiuzzo E, Sacchetti A, Silvani A, Viola G (2020) Ecdysteroid derivatives that reverse p-glycoprotein-mediated drug resistance. J Nat Prod 83(8):2434–2446

    Article  CAS  Google Scholar 

  4. Liu X (2019) ABC family transporters. Adv Exp Med Biol 1141:13–100. https://doi.org/10.1007/978-981-13-7647-4_2

    Article  CAS  PubMed  Google Scholar 

  5. Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S (2019) ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol 1141:549–580. https://doi.org/10.1007/978-981-13-7647-4_12

    Article  CAS  PubMed  Google Scholar 

  6. Zheng Y, Ma L, Sun Q (2021) Clinically-relevant abc transporter for anti-cancer drug resistance. Front Pharmacol 12:705

    Google Scholar 

  7. He J, Fortunati E, Liu D-X, Li Y (2021) Pleiotropic roles of abc transporters in breast cancer. Int J Mol Sci 22(6):3199

    Article  CAS  Google Scholar 

  8. Golalipour M, Mahjoubi F, Sanati MH, Alimoghaddam K (2007) Gene dosage is not responsible for the upregulation of MRP1 gene expression in adult leukemia patients. Arch Med Res 38(3):297–304. https://doi.org/10.1016/j.arcmed.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Mahjoubi F, Golalipour M, Ghavamzadeh A, Alimoghaddam K (2008) Expression of MRP1 gene in acute leukemia. Sao Paulo Med J 126(3):172–179. https://doi.org/10.1590/s1516-31802008000300007

    Article  PubMed  Google Scholar 

  10. Wang Y, Wang Y, Qin Z (2021) The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol 17(3):291–306. https://doi.org/10.1080/17425255.2021.1887139

    Article  CAS  PubMed  Google Scholar 

  11. Piehler AP, Hellum M, Wenzel JJ, Kaminski E, Haug KB, Kierulf P, Kaminski WE (2008) The human ABC transporter pseudogene family: Evidence for transcription and gene-pseudogene interference. BMC Genom 9:165. https://doi.org/10.1186/1471-2164-9-165

    Article  CAS  Google Scholar 

  12. Xiao Y, Jiao C, Lin Y, Chen M, Zhang J, Wang J, Zhang Z (2017) lncRNA UCA1 contributes to imatinib resistance by acting as a cerna against miR-16 in chronic myeloid leukemia cells. DNA Cell Biol 36(1):18–25. https://doi.org/10.1089/dna.2016.3533

    Article  CAS  PubMed  Google Scholar 

  13. An Q, Zhou L, Xu N (2018) Long noncoding RNA FOXD2-AS1 accelerates the gemcitabine-resistance of bladder cancer by sponging miR-143. Biomed pharmacotherap 103:415–420. https://doi.org/10.1016/j.biopha.2018.03.138

    Article  CAS  Google Scholar 

  14. Kong J, Qiu Y, Li Y, Zhang H, Wang W (2019) TGF-β1 elevates P-gp and BCRP in hepatocellular carcinoma through HOTAIR/miR-145 axis. Biopharm Drug Dispos 40(2):70–80. https://doi.org/10.1002/bdd.2172

    Article  CAS  PubMed  Google Scholar 

  15. Han Z, Shi L (2018) Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem Biophys Res Commun 495(1):947–953. https://doi.org/10.1016/j.bbrc.2017.11.121

    Article  CAS  PubMed  Google Scholar 

  16. Wang R, Zhang T, Yang Z, Jiang C, Seng J (2018) Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol 22(9):4068–4075. https://doi.org/10.1111/jcmm.13679

    Article  CAS  Google Scholar 

  17. Gao R, Fang C, Xu J, Tan H, Li P, Ma L (2019) LncRNA CACS15 contributes to oxaliplatin resistance in colorectal cancer by positively regulating ABCC1 through sponging miR-145. Arch Biochem Biophys 663:183–191. https://doi.org/10.1016/j.abb.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Hu H, Yang L, Li L, Zeng C (2018) Long non-coding RNA KCNQ1OT1 modulates oxaliplatin resistance in hepatocellular carcinoma through miR-7-5p/ ABCC1 axis. Biochem Biophys Res Commun 503(4):2400–2406. https://doi.org/10.1016/j.bbrc.2018.06.168

    Article  CAS  PubMed  Google Scholar 

  19. Huang H, Chen J, Ding CM, Jin X, Jia ZM, Peng J (2018) LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol 22(6):3238–3245. https://doi.org/10.1111/jcmm.13605

    Article  CAS  Google Scholar 

  20. Ma Y, Fan B, Ren Z, Liu B, Wang Y (2019) Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway. Onco Targets Ther 12:5485–5497. https://doi.org/10.2147/ott.s197009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song L, Zhou Z, Gan Y, Li P, Xu Y, Zhang Z, Luo F, Xu J, Zhou Q, Dai F (2019) Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J Cell Biochem 120(6):9656–9666. https://doi.org/10.1002/jcb.28244

    Article  CAS  PubMed  Google Scholar 

  22. Zhang CL, Zhu KP, Ma XL (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett 396:66–75. https://doi.org/10.1016/j.canlet.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  23. Fang Z, Chen W, Yuan Z, Liu X, Jiang H (2018) LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed pharmacother 101:536–542. https://doi.org/10.1016/j.biopha.2018.02.130

    Article  CAS  PubMed  Google Scholar 

  24. Jiang B, Li Y, Qu X, Zhu H, Tan Y, Fan Q, Jiang Y, Liao M, Wu X (2018) Long noncoding RNA cancer susceptibility candidate 9 promotes doxorubicin-resistant breast cancer by binding to enhancer of zeste homolog 2. Int J Mol Med 42(5):2801–2810. https://doi.org/10.3892/ijmm.2018.3812

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D (2014) Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 34(17):3182–3193. https://doi.org/10.1128/mcb.01580-13

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abdollahzadeh R, Daraei A (2019) Competing endogenous RNA (ceRN) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. J Cell Physiol 234(7):10080–10100

    Article  CAS  Google Scholar 

  27. Cheetham SW, Faulkner GJ (2020) Overcoming challenges and dogmas to understand the functions of pseudogenes. Nature Rev Genet. 21(3):191–201. https://doi.org/10.1038/s41576-019-0196-1

    Article  CAS  PubMed  Google Scholar 

  28. An Y, Furber KL, Ji S (2017) Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med 21(1):185–192. https://doi.org/10.1111/jcmm.12952

    Article  CAS  PubMed  Google Scholar 

  29. Kringen MK, Stormo C, Grimholt RM, Berg JP, Piehler AP (2012) Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes. BMC Res Notes 5:425. https://doi.org/10.1186/1756-0500-5-425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belinsky MG, Chen ZS, Shchaveleva I, Zeng H, Kruh GD (2002) Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Can Res 62(21):6172–6177

    CAS  Google Scholar 

  31. Bisaccia F, Koshal P, Abruzzese V, Castiglione Morelli MA (2021) Structural and functional characterization of the abcc6 transporter in hepatic cells: role on PXE, cancer therapy and drug resistance. Int J Mol. https://doi.org/10.3390/ijms22062858

    Article  Google Scholar 

  32. Kringen MK, Stormo C, Berg JP, Terry SF, Vocke CM, Rizvi S, Hendig D, Piehler AP (2015) Copy number variation in the ATP-binding cassette transporter ABCC6 gene and ABCC6 pseudogenes in patients with pseudoxanthoma elasticum. Mol Genet Genomic Med 3(3):233–237. https://doi.org/10.1002/mgg3.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai L, Lumsden A, Guenther UP, Neldner SA, Zäch S, Knoblauch H, Ramesar R, Hohl D, Callen DF, Neldner KH, Lindpaintner K, Richards RI, Struk B (2001) A novel Q378X mutation exists in the transmembrane transporter protein ABCC6 and its pseudogene: implications for mutation analysis in pseudoxanthoma elasticum. J Mol Med 79(9):536–546. https://doi.org/10.1007/s001090100275

    Article  CAS  PubMed  Google Scholar 

  34. Guan Y, Li Y, Yang QB, Yu J, Qiao H (2021) LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. Annals transl med 9(8):664. https://doi.org/10.21037/atm-21-505

    Article  CAS  Google Scholar 

  35. Ferrari P, Scatena C, Ghilli M et al (2022) Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci 23:1665. https://doi.org/10.3390/ijms23031665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stewart PA, Luks J, Roycik MD et al (2013) Differentially expressed transcripts and dysregulated signaling pathways and networks in African American breast cancer. PLoS ONE 8:e82460. https://doi.org/10.1371/journal.pone.0082460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soleymani Abyaneh H, Gupta N, Radziwon-Balicka A et al (2017) STAT3 but not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers 9:E137. https://doi.org/10.3390/cancers9100137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Saeed Mohammadi for his helpful technical advice.

Funding

This work was financially supported by Golestan University of Medical Sciences (Grant Number 110477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Golalipour.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Research Ethics Committee at Golestan University of Medical Science (Ethics Number: IR.GOUMS.REC.1398.166).

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Golalipour, M. ABCC6P1 pseudogene induces ABCC6 upregulation and multidrug resistance in breast cancer. Mol Biol Rep 49, 9633–9639 (2022). https://doi.org/10.1007/s11033-022-07872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07872-6

Keywords

Navigation