Skip to main content

Advertisement

Log in

CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Several phytopathogens have detrimental effects on crop production and productivity potentially threatening global food security. Studying the genetic mechanisms of virulence in phytopathogens is vital to assist in their management. Genome editing tools are paving their fascinating roles from the first-generation site-specific nucleases ZNF and TALEN to the current generation clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein9. The discovery of CRISPR/Cas9 has revolutionised the understanding of resistance as well as the susceptibility mechanism against phytopathogens in crop plants. This emerging tool allows researchers to perform precise genome manipulation, genetic screening, regulation, and correction to develop resistance in crop plants with fewer off-target effects. It provides a new opportunity for disease improvement and strengthens the resistant breeding programme. CRISPR/Cas9-based targeted gene manipulation and its enormous application potential as well as the challenges for developing transgene-free disease-resistant crop plants have been discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Hunter MC, Smith RG, Schipanski ME et al (2017) Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 67:386–391. https://doi.org/10.1093/biosci/bix010

    Article  Google Scholar 

  2. Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  3. Gao Z, Liu Q, Zhang Y et al (2020) OsCUL3a-Associated Molecular Switches Have Functions in Cell Metabolism, Cell Death, and Disease Resistance. J Agric Food Chem 68:5471–5482. https://doi.org/10.1021/acs.jafc.9b07426

    Article  CAS  PubMed  Google Scholar 

  4. van Butselaar T, Van den Ackerveken G (2020) Salicylic Acid Steers the Growth–Immunity Tradeoff. Trends Plant Sci 25:566–576. https://doi.org/10.1016/j.tplants.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276. https://doi.org/10.1038/nrm.2018.2

    Article  CAS  PubMed  Google Scholar 

  6. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiml S, Fauser F, Puchta H (2016) Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc Natl Acad Sci 113:7266–7271. https://doi.org/10.1073/pnas.1603823113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57. https://doi.org/10.1093/jxb/eru429

    Article  CAS  PubMed  Google Scholar 

  9. Paul JW, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35:1417–1427. https://doi.org/10.1007/s00299-016-1985-z

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Bruins ME, Yang ZQ et al (2016) A new formula to calculate activity of superoxide dismutase in indirect assays. Anal Biochem 503:65–67. https://doi.org/10.1016/j.ab.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

    Article  CAS  PubMed  Google Scholar 

  12. Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1–93. https://doi.org/10.1017/S0033583510000181

    Article  CAS  PubMed  Google Scholar 

  13. Molina R, Montoya G, Prieto J (2011) Meganucleases and Their Biomedical Applications. In: eLS. Wiley

  14. Bartsevich VV, Morris J, Tomberlin G et al (2016) 579. Meganucleases as an Efficient Tool for Genome Editing. Mol Ther 24:S230. https://doi.org/10.1016/S1525-0016(16)33387-1

    Article  Google Scholar 

  15. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011) Creating Designed Zinc-Finger Nucleases with Minimal Cytotoxicity. J Mol Biol 405:630–641. https://doi.org/10.1016/j.jmb.2010.10.043

    Article  CAS  PubMed  Google Scholar 

  17. Boch J, Scholze H, Schornack S et al (2009) Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Sci (80-) 326:1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  Google Scholar 

  18. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 186:757–761. https://doi.org/10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tyagi S, Kumar R, Das A et al (2020) CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J Biotechnol 319:36–53. https://doi.org/10.1016/j.jbiotec.2020.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karvelis T, Gasiunas G, Miksys A et al (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10:841–851. https://doi.org/10.4161/rna.24203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967. https://doi.org/10.1002/1873-3468.13073

    Article  CAS  PubMed  Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I et al (2012) A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Sci (80-) 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  25. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359. https://doi.org/10.1111/tpj.12554

    Article  CAS  PubMed  Google Scholar 

  26. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller SM, Wang T, Randolph PB et al (2020) Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol 38:471–481. https://doi.org/10.1038/s41587-020-0412-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440. https://doi.org/10.1038/nbt.3811

    Article  CAS  PubMed  Google Scholar 

  31. Ren B, Yan F, Kuang Y et al (2018) Improved Base Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant. Mol Plant 11:623–626. https://doi.org/10.1016/j.molp.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  32. Yan F, Kuang Y, Ren B et al (2018) Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Mol Plant 11:631–634. https://doi.org/10.1016/j.molp.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  33. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shmakov S, Smargon A, Scott D et al (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169–182. https://doi.org/10.1038/nrmicro.2016.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei C, Li S-Y, Liu J-K et al (2017) The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res gkx018. https://doi.org/10.1093/nar/gkx018

  36. Kim HK, Song M, Lee J et al (2017) In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nat Methods 14:153–159. https://doi.org/10.1038/nmeth.4104

    Article  CAS  PubMed  Google Scholar 

  37. Gao L, Cox DBT, Yan WX et al (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789–792. https://doi.org/10.1038/nbt.3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jackson SA, McKenzie RE, Fagerlund RD et al (2017) CRISPR-Cas: Adapting to change. Science (80-) 356:. https://doi.org/10.1126/science.aal5056

  39. Heler R, Samai P, Modell JW et al (2015) Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519:199–202. https://doi.org/10.1038/nature14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei Y, Terns RM, Terns MP (2015) Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes Dev 29:356–361. https://doi.org/10.1101/gad.257550.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stella S, Alcón P, Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546:559–563. https://doi.org/10.1038/nature22398

    Article  CAS  PubMed  Google Scholar 

  42. Deveau H, Barrangou R, Garneau JE et al (2008) Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400. https://doi.org/10.1128/JB.01412-07

    Article  CAS  PubMed  Google Scholar 

  43. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740. https://doi.org/10.1099/mic.0.023960-0

    Article  CAS  PubMed  Google Scholar 

  44. Fonfara I, Richter H, Bratovič M et al (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521. https://doi.org/10.1038/nature17945

    Article  CAS  PubMed  Google Scholar 

  45. Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing. https://doi.org/10.1002/wrna.1481. WIREs RNA 9:

  46. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Sci (80-) 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  Google Scholar 

  47. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573. https://doi.org/10.1038/nature13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang F, Zhou K, Ma L et al (2015) A Cas9–guide RNA complex preorganized for target DNA recognition. Sci (80-) 348:1477–1481. https://doi.org/10.1126/science.aab1452

    Article  CAS  Google Scholar 

  49. Haurwitz RE, Jinek M, Wiedenheft B et al (2010) Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease. Sci (80-) 329:1355–1358. https://doi.org/10.1126/science.1192272

    Article  CAS  Google Scholar 

  50. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109. https://doi.org/10.1073/pnas.1208507109

  52. Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science (80-) 343:. https://doi.org/10.1126/science.1247997

  53. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 156:935–949. https://doi.org/10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 165:949–962. https://doi.org/10.1016/j.cell.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao P, Yang H, Rajashankar KR et al (2016) Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26:901–913. https://doi.org/10.1038/cr.2016.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527:110–113. https://doi.org/10.1038/nature15544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao R, Liu D, Jia X et al (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 3:135–149. https://doi.org/10.1016/j.synbio.2018.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Silva MS, Arraes FBM, de Campos M et al (2018) Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci 270:72–84. https://doi.org/10.1016/j.plantsci.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  59. Kamber T, Pothier JF, Pelludat C et al (2017) Role of the type VI secretion systems during disease interactions of Erwinia amylovora with its plant host. BMC Genomics 18:628. https://doi.org/10.1186/s12864-017-4010-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kamoun S (2006) A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annu Rev Phytopathol 44:41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436

    Article  CAS  PubMed  Google Scholar 

  61. Kachroo A, Vincelli P, Kachroo P (2017) It Being Applied? Phytopathology® 107:1452–1461. https://doi.org/10.1094/PHYTO-04-17-0130-RVW. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is

  62. Boutrot F, Zipfel C (2017) Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annu Rev Phytopathol 55:257–286. https://doi.org/10.1146/annurev-phyto-080614-120106

    Article  CAS  PubMed  Google Scholar 

  63. Andersen E, Ali S, Byamukama E et al (2018) Disease Resistance Mechanisms in Plants. Genes (Basel) 9:339. https://doi.org/10.3390/genes9070339

    Article  CAS  PubMed  Google Scholar 

  64. Tyagi S, Mulla SI, Lee K-J et al (2018) VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 38:1277–1296. https://doi.org/10.1080/07388551.2018.1472551

    Article  CAS  PubMed  Google Scholar 

  65. Oskar M, Buchwald W, Nawrot R (2015) Plant defense responses against viral and bacterial pathogen infections. Focus on RNA-binding proteins (RBPs). Herba Pol 60:60–73. https://doi.org/10.1515/hepo-2015-0005

    Article  Google Scholar 

  66. Doron S, Melamed S, Ofir G et al (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science (80-) 359:. https://doi.org/10.1126/science.aar4120

  67. Chen L (2014) SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:1150–1155. https://doi.org/10.1111/nph.12445

  68. Bezrutczyk M, Yang J, Eom J et al (2018) Sugar flux and signaling in plant–microbe interactions. Plant J 93:675–685. https://doi.org/10.1111/tpj.13775

    Article  CAS  PubMed  Google Scholar 

  69. Zaidi SS-A, Mukhtar MS, Mansoor S (2018) Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends Biotechnol 36:898–906. https://doi.org/10.1016/j.tibtech.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  70. Srinivasan B, Gnanamanickam SS (2005) Identification of a new source of resistance in wild rice, Oryza rufipogon to bacterial blight of rice caused by Indian strains of Xanthomonas oryzae pv. oryzae. Curr Sci 88:1229–1231

    CAS  Google Scholar 

  71. Jiang N, Yan J, Liang Y et al (2020) Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—an. Updated Rev Rice 13:3. https://doi.org/10.1186/s12284-019-0358-y

    Article  Google Scholar 

  72. Oliva R, Ji C, Atienza-Grande G et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37:1344–1350. https://doi.org/10.1038/s41587-019-0267-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23:390–398. https://doi.org/10.1016/j.tcb.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Streubel J, Pesce C, Hutin M et al (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200:808–819. https://doi.org/10.1111/nph.12411

    Article  CAS  PubMed  Google Scholar 

  75. Tran TT, Pérez-Quintero AL, Wonni I et al (2018) Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLOS Pathog 14:e1007092. https://doi.org/10.1371/journal.ppat.1007092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188–e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaidi SS-A, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21:289. https://doi.org/10.1186/s13059-020-02204-y

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xu Z, Xu X, Gong Q et al (2019) Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice. Mol Plant 12:1434–1446. https://doi.org/10.1016/j.molp.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  79. Antony G, Zhou J, Huang S et al (2010) Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os- 11N3. Plant Cell 22:3864–3876. https://doi.org/10.1105/tpc.110.078964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zafar K, Khan MZ, Amin I et al (2020) Precise CRISPR-Cas9 Mediated Genome Editing in Super Basmati Rice for Resistance Against Bacterial Blight by Targeting the Major Susceptibility Gene. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00575

  81. Hajira SK, Sundaram RM, Laha GS et al (2016) A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice. Rice Sci 23:144–151. https://doi.org/10.1016/j.rsci.2015.11.004

    Article  Google Scholar 

  82. Li C, Li W, Zhou Z et al (2020) A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight‐resistant rice. Plant Biotechnol J 18:313–315. https://doi.org/10.1111/pbi.13217

    Article  PubMed  Google Scholar 

  83. Kim Y-A, Moon H, Park C-J (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 12:67. https://doi.org/10.1186/s12284-019-0325-7

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li S, Shen L, Hu P et al (2019) Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61:1201–1205. https://doi.org/10.1111/jipb.12774

    Article  CAS  PubMed  Google Scholar 

  85. Xie K, Yang Y (2013) RNA-Guided Genome Editing in Plants Using a CRISPR–Cas System. Mol Plant 6:1975–1983. https://doi.org/10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  86. Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J 17:665–673. https://doi.org/10.1111/pbi.13006

    Article  CAS  PubMed  Google Scholar 

  87. Jia H, Zhang Y, Orbović V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823. https://doi.org/10.1111/pbi.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng A, Chen S, Lei T et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 25:387–395. https://doi.org/10.1016/j.tree.2010.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  90. DEAN R, VAN KAN JAL, PRETORIUS ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang F, Wang C, Liu P et al (2016) Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE 11:e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Büschges R, Hollricher K, Panstruga R et al (1997) The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695–705. https://doi.org/10.1016/S0092-8674(00)81912-1

    Article  PubMed  Google Scholar 

  93. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  94. Zhang Y, Bai Y, Wu G et al (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  95. Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482. https://doi.org/10.1038/s41598-017-00578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koseoglou E (2017) The study of SlPMR4 CRISPR/Cas9- mediated tomato allelic series for resistance against powdery mildew Eleni Koseoglou.1–29

  97. Prihatna C, Barbetti MJ, Barker SJ (2018) A Novel Tomato Fusarium Wilt Tolerance Gene. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01226

  98. Wang X, Tu M, Wang D et al (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855. https://doi.org/10.1111/pbi.12832

    Article  CAS  PubMed  Google Scholar 

  99. Zhou J, Peng Z, Long J et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643. https://doi.org/10.1111/tpj.12838

    Article  CAS  PubMed  Google Scholar 

  100. Zhang S, Wang L, Zhao R et al (2018) Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. J Agric Food Chem 66:8949–8956. https://doi.org/10.1021/acs.jafc.8b02191

    Article  CAS  PubMed  Google Scholar 

  101. Malnoy M, Viola R, Jung M-H et al (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01904

  102. Fan S, Zhang Z, Song Y et al (2022) CRISPR/Cas9-mediated targeted mutagenesis of GmTCP19L increasing susceptibility to Phytophthora sojae in soybean. PLoS ONE 17:e0267502. https://doi.org/10.1371/journal.pone.0267502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Schie CCN, Takken FLW (2014) Susceptibility Genes 101: How to Be a Good Host. Annu Rev Phytopathol 52:551–581. https://doi.org/10.1146/annurev-phyto-102313-045854

    Article  CAS  PubMed  Google Scholar 

  104. Bastet A, Lederer B, Giovinazzo N et al (2018) Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol J 16:1569–1581. https://doi.org/10.1111/pbi.12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rodríguez-Leal D, Lemmon ZH, Man J et al (2017) Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 171:470–480e8. https://doi.org/10.1016/j.cell.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  106. Rushton PJ, Reinstädler A, Lipka V et al (2002) Synthetic Plant Promoters Containing Defined Regulatory Elements Provide Novel Insights into Pathogen- and Wound-Induced Signaling. Plant Cell 14:749–762. https://doi.org/10.1105/tpc.010412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilson LOW, O’Brien AR, Bauer DC (2018) The Current State and Future of CRISPR-Cas9 gRNA Design Tools. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00749

  108. Modrzejewski D, Hartung F, Lehnert H et al (2020) Which Factors Affect the Occurrence of Off-Target Effects Caused by the Use of CRISPR/Cas: A Systematic Review in Plants. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.574959

  109. Feng C, Yuan J, Wang R et al (2016) Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. J Genet Genomics 43:37–43. https://doi.org/10.1016/j.jgg.2015.10.002

    Article  PubMed  Google Scholar 

  110. Shah SA, Erdmann S, Mojica FJM, Garrett RA (2013) Protospacer recognition motifs. RNA Biol 10:891–899. https://doi.org/10.4161/rna.23764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bortesi L, Zhu C, Zischewski J et al (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14:2203–2216. https://doi.org/10.1111/pbi.12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hahn F, Nekrasov V (2019) CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep 38:437–441. https://doi.org/10.1007/s00299-018-2355-9

    Article  CAS  PubMed  Google Scholar 

  113. Baysal C, Bortesi L, Zhu C et al (2016) CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol Breed 36:108. https://doi.org/10.1007/s11032-016-0533-4

    Article  CAS  Google Scholar 

  114. Čermák T, Baltes NJ, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. https://doi.org/10.1186/s13059-015-0796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765. https://doi.org/10.1038/srep24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clemmensen SE, Kromphardt KJK, Frandsen RJN (2022) Marker-free CRISPR-Cas9 based genetic engineering of the phytopathogenic fungus, Penicillium expansum. Fungal Genet Biol 160:103689. https://doi.org/10.1016/j.fgb.2022.103689

    Article  CAS  PubMed  Google Scholar 

  117. Biswas P, Anand U, Ghorai M et al (2022) Unraveling the promise and limitations of CRISPR/Cas system in natural product research: Approaches and challenges. Biotechnol J 2100507. https://doi.org/10.1002/biot.202100507

    Article  Google Scholar 

  118. Koo T, Lee J, Kim J-S (2015) Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9. Mol Cells 38:475–481. https://doi.org/10.14348/molcells.2015.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wienert B, Wyman SK, Richardson CD et al (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Sci (80-) 364:286–289. https://doi.org/10.1126/science.aav9023

    Article  CAS  Google Scholar 

  120. Slaymaker IM, Gao L, Zetsche B et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Sci (80-) 351:84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  Google Scholar 

  121. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410. https://doi.org/10.1038/nature24268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee JK, Jeong E, Lee J et al (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9:3048. https://doi.org/10.1038/s41467-018-05477-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moon S, Bin, Kim DY, Ko J-H et al (2019) Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends Biotechnol 37:870–881. https://doi.org/10.1016/j.tibtech.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  124. Jin S, Zong Y, Gao Q et al (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Sci (80-) 364:292–295. https://doi.org/10.1126/science.aaw7166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DK kindly acknowledges the BHU-UGC fellowship.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DK, BDP, PD: Conceptualization and visualization of the present review, and writing the original draft of MS; DK, BDP: designed the figures and tables, AK, SS assists in the figures and editing of MS.

Corresponding authors

Correspondence to Bishun Deo Prasad or Padmanabh Dwivedi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

All the authors declare that there are no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, D., Prasad, B.D., Dwivedi, P. et al. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Mol Biol Rep 49, 11587–11600 (2022). https://doi.org/10.1007/s11033-022-07851-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07851-x

Keywords

Navigation