Skip to main content

Advertisement

Log in

Mitochondrial ribosomal small subunit (MRPS) MRPS23 protein–protein interaction reveals phosphorylation by CDK11-p58 affecting cell proliferation and knockdown of MRPS23 sensitizes breast cancer cells to CDK1 inhibitors

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Post-translational modification of some mitoribosomal proteins has been found to regulate their functions. MRPS23 has been reported to be overexpressed in various cancers and has been predicted to be involved in increased cell proliferation. Furthermore, MRPS23 is a driver of luminal subtype breast cancer. However, its exact role and function in cancer remains unknown.

Methods and results

Our previous study identified protein–protein interactions involving MRPS23 and CDK11A. In this study, we confirmed the interaction of MRPS23 with the p110 and p58 isoforms of CDK11A. Phosphoprotein enrichment studies and in vitro kinase assay using CDK11A/cyclin D3 followed by MALDI-ToF/ToF analysis confirmed the phosphorylation of MRPS23 at N-terminal serine 11 residue. Breast cancer cells expressing the MRPS23 (S11G) mutant showed increased cell proliferation, increased expression of PI3-AKT pathway proteins [p-AKT (Ser47), p-AKT (Thr308), p-PDK (Ser241) and p-GSK-3β (Ser9)] and increased antiapoptotic pathway protein expression [Bcl-2, Bcl-xL, p-Bcl2 (Ser70) and MCL-1] when compared with the MRPS23 (S11A) mutant-overexpressing cells. This finding indicated the role of MRPS23 phosphorylation in the proliferation and survival of breast cancer cells. The correlation of inconsistent MRPS23 phosphoserine 11 protein expression with CDK11A in the breast cancer cells suggested phosphorylation by other kinases. In vitro kinase assay showed that CDK1 kinase also phosphorylated MRPS23 and that inhibition using CDK1 inhibitors lowered phospho-MRPS23 (Ser11) levels. Additionally, modulating the expression of MRPS23 altered the sensitivity of the cells to CDK1 inhibitors.

Conclusion

In conclusion, phosphorylation of MRPS23 by mitotic kinases might potentially be involved in the proliferation of breast cancer cells. Furthermore, MRPS23 can be targeted for sensitizing the breast cancer cells to CDK1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

BCL2:

B-cell lymphoma 2

CDK1:

Cyclind dependent kinase 1

CDK11A:

Cyclin dependent kinase–11A

CDK1i:

Indolyl methylene-2-indolinone anti-proliferative agent

COX2:

Cytochrome oxidase 2

c-Raf:

RAF proto-oncogene serine/threonine-protein kinase

DAP3:

Death associated protein -3

DMEM:

Dulbecco’s modified eagle medium

ECL:

Enhanced chemiluminescence

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

FP:

Flavopiridol

GAPDH:

Glyceraldehyde- 3-phosphate dehydrogenase

GSK-3β:

Glycogen synthase kinase 3 beta

GST:

Glutathione-S-transferase

IP:

Immuneprecipitation

KLH:

Keyhole limpet hemocyanin

LC/MS:

Liquid chromatography/mass spectrometry

MALDI:

Matrix-assisted laser desorption/ionization

MCL-1:

Myeloid cell leukemia 1

MRPS:

Mitochondrial ribosomal small subunit

MRPS23:

Mitochondrial ribosomal protein S23

p21:

CDK-interacting protein 1

PDK1:

Protein 3-phosphoinositide-dependent protein kinase-1

p-MRPS23 (Ser 11):

Phosphor-serine11 MRPS23 antobody

PPI:

Protein–protein interaction

PTEN:

Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase

PTM:

Post translational modification

S11A:

Ser 11 to Ala substituition mutant of MRPS23

S11G:

Ser 11>glutamin acid substitutiton mutant of MRPS23

ser:

Serine

TMB:

3,3′,5,5′-Tetramethylbenzidine

TOF:

Time-of-flight

WT:

Wild type

δTM:

Deletion mutant

References

  1. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672. https://doi.org/10.1038/nsmb.1842

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y-C, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24:143–160. https://doi.org/10.1038/cr.2013.151

    Article  CAS  PubMed  Google Scholar 

  3. Wu Z, Huang R, Yuan L (2019) Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 676:108138. https://doi.org/10.1016/j.abb.2019.108138

    Article  CAS  PubMed  Google Scholar 

  4. Suryadinata R, Sadowski M, Sarcevic B (2010) Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci Rep 30:243–255. https://doi.org/10.1042/BSR20090171

    Article  CAS  PubMed  Google Scholar 

  5. Niemi NM, MacKeigan JP (2013) Mitochondrial phosphorylation in apoptosis: flipping the death switch. Antioxid Redox Signal 19:572–582. https://doi.org/10.1089/ars.2012.4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papa S, Martino PL, Capitanio G et al (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37. https://doi.org/10.1007/978-94-007-2869-1_1

    Article  CAS  PubMed  Google Scholar 

  7. Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837:418–426. https://doi.org/10.1016/j.bbabio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Mai N, Chrzanowska-Lightowlers ZMA, Lightowlers RN (2017) The process of mammalian mitochondrial protein synthesis. Cell Tissue Res 367:5–20. https://doi.org/10.1007/s00441-016-2456-0

    Article  CAS  PubMed  Google Scholar 

  9. Koc EC, Koc H (2012) Regulation of mammalian mitochondrial translation by post-translational modifications. Biochim Biophys Acta 1819:1055–1066. https://doi.org/10.1016/j.bbagrm.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  10. Miller JL, Cimen H, Koc H, Koc EC (2009) Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis. J Proteome Res 8:4789–4798. https://doi.org/10.1021/pr9004844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Cimen H, Han M-J et al (2010) NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 285:7417–7429. https://doi.org/10.1074/jbc.M109.053421

    Article  CAS  PubMed  Google Scholar 

  12. Levshenkova EV, Ukraintsev KE, Orlova VV et al (2004) The structure and specific features of the cDNA expression of the human gene MRPL37. Bioorg Khim 30:499–506. https://doi.org/10.1023/b:rubi.0000043788.86955.ea

    Article  CAS  PubMed  Google Scholar 

  13. Kim H-R, Chae H-J, Thomas M et al (2007) Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. FASEB J Off Publ Fed Am Soc Exp Biol 21:188–196. https://doi.org/10.1096/fj.06-6283com

    Article  CAS  Google Scholar 

  14. Kissil JL, Cohen O, Raveh T, Kimchi A (1999) Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha- and Fas-induced cell death. EMBO J 18:353–362. https://doi.org/10.1093/emboj/18.2.353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacques C, Fontaine J-F, Franc B et al (2009) Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours. Br J Cancer 101:132–138. https://doi.org/10.1038/sj.bjc.6605111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia Y, Ye L, Ji K et al (2014) Death-associated protein-3, DAP-3, correlates with preoperative chemotherapy effectiveness and prognosis of gastric cancer patients following perioperative chemotherapy and radical gastrectomy. Br J Cancer 110:421–429. https://doi.org/10.1038/bjc.2013.712

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki H, Ide N, Yukiue H et al (2004) Arg and DAP3 expression was correlated with human thymoma stage. Clin Exp Metastasis 21:507–513. https://doi.org/10.1007/s10585-004-2153-3

    Article  CAS  PubMed  Google Scholar 

  18. Wazir U, Jiang WG, Sharma AK, Mokbel K (2012) The mRNA expression of DAP3 in human breast cancer: correlation with clinicopathological parameters. Anticancer Res 32:671–674

    CAS  PubMed  Google Scholar 

  19. Oviya RP, Gopal G, Shirley SS et al (2021) Mitochondrial ribosomal small subunit proteins (MRPS) MRPS6 and MRPS23 show dysregulation in breast cancer affecting tumorigenic cellular processes. Gene 790:145697. https://doi.org/10.1016/j.gene.2021.145697

    Article  CAS  PubMed  Google Scholar 

  20. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3. https://doi.org/10.1126/scisignal.2000475

    Article  CAS  PubMed  Google Scholar 

  21. Zong H, Chi Y, Wang Y et al (2007) Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 27:7125–7142. https://doi.org/10.1128/MCB.01753-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao Y, Li F, Zhou H et al (2017) Down-regulation of MRPS23 inhibits rat breast cancer proliferation and metastasis. Oncotarget 8:71772–71781. https://doi.org/10.18632/oncotarget.17888

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pu M, Wang J, Huang Q et al (2017) High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumor Biol 39:1010428317709127. https://doi.org/10.1177/1010428317709127

    Article  CAS  Google Scholar 

  24. LI B, ZHANG YL (2002) Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization. Cell Res 12:215–221. https://doi.org/10.1038/sj.cr.7290127

    Article  PubMed  Google Scholar 

  25. Staub E, Gröne J, Mennerich D et al (2006) A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer 5:37. https://doi.org/10.1186/1476-4598-5-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyng H, Brovig RS, Svendsrud DH et al (2006) Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 7:268. https://doi.org/10.1186/1471-2164-7-268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurokawa Y, Matoba R, Nakamori S et al (2004) PCR-array gene expression profiling of hepatocellular carcinoma. J Exp Clin Cancer Res 23:135–141

    CAS  PubMed  Google Scholar 

  28. Gatza ML, Silva GO, Parker JS et al (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet 46:1051–1059. https://doi.org/10.1038/ng.3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kenmochi N, Suzuki T, Uechi T et al (2001) The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders. Genomics 77:65–70. https://doi.org/10.1006/geno.2001.6622

    Article  CAS  PubMed  Google Scholar 

  30. Liu T-H, Wu Y-F, Dong X-L et al (2017) Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation. Cell Cycle 16:861–868. https://doi.org/10.1080/15384101.2017.1304339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Renshaw MJ, Panagiotou TC, Lavoie BD, Wilde A (2019) CDK11(p58)-cyclin L1β regulates abscission site assembly. J Biol Chem 294:18639–18649. https://doi.org/10.1074/jbc.RA119.009107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams CW, Iyer J, Liu Y, O’Connell KF (2018) CDK-11-Cyclin L is required for gametogenesis and fertility in C. elegans. Dev Biol 441:52–66. https://doi.org/10.1016/j.ydbio.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding J, Fang Z, Liu X et al (2020) CDK11 safeguards the identity of human embryonic stem cells via fine-tuning signaling pathways. J Cell Physiol 235:4279–4290. https://doi.org/10.1002/jcp.29305

    Article  CAS  PubMed  Google Scholar 

  34. Jia B, Choy E, Cote G et al (2014) Cyclin-dependent kinase 11 (CDK11) is crucial in the growth of liposarcoma cells. Cancer Lett 342:104–112. https://doi.org/10.1016/j.canlet.2013.08.040

    Article  CAS  PubMed  Google Scholar 

  35. Tiedemann RE, Zhu YX, Schmidt J et al (2012) Identification of molecular vulnerabilities in human multiple myeloma cells by RNA interference lethality screening of the druggable genome. Cancer Res 72:757–768. https://doi.org/10.1158/0008-5472.CAN-11-2781

    Article  CAS  PubMed  Google Scholar 

  36. Duan Z, Zhang J, Choy E et al (2012) Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clin Cancer Res Off J Am Assoc Cancer Res 18:4580–4588. https://doi.org/10.1158/1078-0432.CCR-12-1157

    Article  CAS  Google Scholar 

  37. Zhou Y, Shen JK, Hornicek FJ et al (2016) The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 7:40846–40859. https://doi.org/10.18632/oncotarget.8519

    Article  PubMed  PubMed Central  Google Scholar 

  38. Du Y, Yan D, Yuan Y et al (2019) CDK11(p110) plays a critical role in the tumorigenicity of esophageal squamous cell carcinoma cells and is a potential drug target. Cell Cycle 18:452–466. https://doi.org/10.1080/15384101.2019.1577665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou Y, Han C, Li D et al (2015) Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep 5:10433. https://doi.org/10.1038/srep10433

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liao Y, Sassi S, Halvorsen S et al (2018) Author correction: androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11. Sci Rep 8:12107

    Article  Google Scholar 

  41. An S, Kwon OS, Yu J, Jang SK (2020) A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03436-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Klaestad E, Opdahl S, Engstrom MJ et al (2020) MRPS23 amplification and gene expression in breast cancer; association with proliferation and the non-basal subtypes. Breast Cancer Res Treat 180:73–86. https://doi.org/10.1007/s10549-020-05532-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ha CH, Kim JY, Zhao J et al (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 107:15467–15472. https://doi.org/10.1073/pnas.1000462107

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chi Y, Wang L, Xiao X et al (2014) Abnormal expression of CDK11p58 in prostate cancer. Cancer Cell Int 14:2. https://doi.org/10.1186/1475-2867-14-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deep A, Marwaha RK, Marwaha MG et al (2018) Flavopiridol as cyclin dependent kinase (CDK) inhibitor: a review. New J Chem 42:18500–18507. https://doi.org/10.1039/C8NJ04306J

    Article  CAS  Google Scholar 

  46. Andreani A, Locatelli A, Rambaldi M et al (1996) Potential antitumor agents. 25 [1]. Synthesis and cytotoxic activity of 3-(2-chloro-3-indolylmethylene)1,3-dihydroindol-2-ones. Anticancer Res 16:3585–3588

    CAS  PubMed  Google Scholar 

  47. Andreani A, Granaiola M, Leoni A et al (2004) Substituted E-3-(2-chloro-3-indolylmethylene)1,3-dihydroindol-2-ones with antitumor activity. Bioorg Med Chem 12 5:1121–1128

    Article  Google Scholar 

  48. Saisomboon S, Kariya R, Vaeteewoottacharn K et al (2019) Antitumor effects of flavopiridol, a cyclin-dependent kinase inhibitor, on human cholangiocarcinoma in vitro and in an in vivo xenograft model. Heliyon 5:e01675. https://doi.org/10.1016/j.heliyon.2019.e01675

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge DST- Science and Engineering Research Board (SERB) for financial support. R. P. Oviya is supported by the Senior Research Fellowship (SRF-Direct) from Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Contributions

GG and RPO planned and performed the experiments, TR, GG, and RPO analyzed the data, and wrote the manuscript. SJ assisted in MALDI and nLC/MS/MS experiments in the proteomics facility of our department, PR performed the flow cytometry experiment; BR performed the animal experiments. TR, assessed the patient clinical data for the study.

Corresponding author

Correspondence to Gopisetty Gopal.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study is not a clinical trial and does not involve human subjects. All the tissues used for research purpose was obtained following informed consent, from Tumor bank, Department of Oncopathology, Cancer Institute (WIA). Animal studies were carried out with prior approval from the Institutional Animal Ethics Committee (IAEC) of Cancer Institute (W.I.A), Adyar, Chennai, India with IAEC approval number: CIWIA0119WR. Care of animals complied according to CPCSEA (Committee for the purpose of Control and Supervision of Experiments on Animals) guidelines, Government of India.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2937.2 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oviya, R.P., Thangaretnam, K.P., Ramachandran, B. et al. Mitochondrial ribosomal small subunit (MRPS) MRPS23 protein–protein interaction reveals phosphorylation by CDK11-p58 affecting cell proliferation and knockdown of MRPS23 sensitizes breast cancer cells to CDK1 inhibitors. Mol Biol Rep 49, 9521–9534 (2022). https://doi.org/10.1007/s11033-022-07842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07842-y

Keywords

Navigation