Skip to main content

Advertisement

Log in

Arg and DAP3 expression was correlated with human thymoma stage

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Thymoma is one of the most common solid tumors in the mediastinum. As there is no typical cell line for human thymoma, the development and use of molecular-based therapy for thymoma will require detailed molecular genetic analysis of patients' tissues. The recent reports showed that the gain of chromosome 1q regions was frequent in thymoma. We investigated the use of oligonucleotide arrays to monitor in vivo gene expression levels at chromosome 1q regions in the early- (stage I or II) and late-stage (stage IVa) thymoma tissues from patients. These in vivo gene expression profiles were verified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) using LightCycler for 36 thymoma patients. Using both the methods, candidate genes were come up. These are Arg tyrosine kinase and death-associated protein 3 (DAP3), which are known as ionizing radiation resistance conferring proteins. The Arg/GAPDH mRNA level in stage IV thymoma (90.716± 177.851) was significantly higher than in stage I thymoma (10.335 ± 25.744, P = 0.0465). The DAP3/GAPDH mRNA level in stage IV thymoma (17.424 ± 20.649) was significantly higher than in stage I thymoma (5.184 ± 3.878, P = 0.0305). DAP3 expression was also correlated with the WHO classification. The combined use of oligonucleotide microarray and real-time RT-PCR analyses provided a candidate molecular marker surrounding the development and progression of thymoma correlated with chromosome 1q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lardinois D, Rechsteiner R, Lang RH et al. Prognostic rele-vance of Masaoka and Muller–Hermelink classi cation inpatients with thymic tumors. Ann Thorac Surg 2000; 69: 1550–5.

    Article  PubMed  CAS  Google Scholar 

  2. Rios A, Torres J, Galindo PJ et al. Prognostic factors in thymicepithelial neoplasms. Eur J Cardiothorac Surg 2002; 21: 307–13.

    Article  PubMed  CAS  Google Scholar 

  3. Sperling B, Marschall J, Kennedy R et al. Thymoma: A review of the clinical and pathological ndings in 65 cases. Can J Surg 2003; 46: 37–42.

    PubMed  Google Scholar 

  4. Iyer VR, Eisen MB, Ross DT et al. The transcriptional pro-gram in the response of human broblasts to serum. Science(Washington, DC) 1999; 283: 83–7.

    CAS  Google Scholar 

  5. Lockhart DJ, Dong H, Byrne M et al. Expression monitoringby hybridization to high-density oligonucleotide arrays. NatBiotechnol 1996; 14: 1675–80.

    Article  CAS  Google Scholar 

  6. DeRisi J, Penland L, Brown PO et al. Use a cDNA microarrayto analyse gene expression patterns in human cancer. Nat Genet1996; 14: 457–60.

    Article  PubMed  CAS  Google Scholar 

  7. Pietu G, Alibert O, Guichard V et al. Novel gene transcriptspreferentially expressed in human muscles revealed by quanti-tative hybridization of a high density cDNA array. GenomeRes 1996; 6: 492–503.

    CAS  Google Scholar 

  8. Sasaki H, Ide N, Fukai I et al. Gene expression analysis of human thymoma correlates with tumor stage. Int J Cancer 2002; 101: 342–7.

    Article  PubMed  CAS  Google Scholar 

  9. Sasaki H, Ide N, Sendo F et al. Glycosylphosphatidyl inositol-anchored protein (GPI-80) gene expression is correlated with human thymoma stage. Cancer Sci 2003; 94: 809–13.

    Article  PubMed  CAS  Google Scholar 

  10. Sasaki H, Fujii Y, Ide N. Chromosome 6 abnormalities corre-late with thymoma progression. Am J Pathol 2003; 163: 2635–6.

    PubMed  CAS  Google Scholar 

  11. Inoue M, Marx A, Zettl A et al. Chromosome 6 suffer frequent and multiple aberrations in thymoma. Am J Pathol 2002; 161: 1507–13.

    PubMed  CAS  Google Scholar 

  12. Wittwer CT, Ririe KM, Andrew RV et al The LightCycler: Amicrovolume multisample fluorimeter with rapid temperaturecontrol. Biotechniques 1997; 22: 176–81.

    PubMed  CAS  Google Scholar 

  13. Masaoka A, Monden Y, Nakahara K et al. Follow up study ofthymomas with special reference to their clinical stages. Cancer1981; 48: 2485–92.

    Article  PubMed  CAS  Google Scholar 

  14. Kruh GD, Perego R, Miki T et al. The complete codingsequence of arg de nes the Abelson subfamily of cytoplasmictyrosine kinases. Proc Natl Acad Sci USA 1990; 87(15): 5802–6.

    Article  PubMed  CAS  Google Scholar 

  15. Mysliwiec T, Perego R, Kruh GD. Analysis of chimeric Gag–Arg/Abl molecules indicates a distinct negative regulatory rolefor the Arg C-terminal domain. Oncogene 1996; 12(3): 631–40.

    PubMed  CAS  Google Scholar 

  16. Okuda K, Weisberg E, Gilliland DG et al. ARG tyrosine kinaseactivity is inhibited by STI571. Blood 2001; 97(8): 2440–8.

    Article  PubMed  CAS  Google Scholar 

  17. Lu TJ, Lu TL, Su IJ et al. Tyrosine kinase expression pro le inbladder cancer. Anticancer Res 1997; 17(4A): 2635–7.

    PubMed  CAS  Google Scholar 

  18. Meric F, Lee WP, Sahin A et al. Expression pro le of tyrosinekinase in breast cancer. Clin Cancer Res 2002; 8(2): 361–7.

    PubMed  CAS  Google Scholar 

  19. Chen W-S, Kung H-J, Yang W-K et al. Comparative tyrosinekinase pro les in colorectal cancers: enhanced arg expression incarcinoma as compared with adenoma and normal mucosa. IntJ Cancer 1999; 83: 579–84.

    Article  CAS  Google Scholar 

  20. Wu CW, LI AF, Chi CW et al. Arg tyrosine kinase expressionin human gastric adenocarcinoma in associated with vessel invasion. Anticancer Res 2003; 23: 205–10.

    PubMed  CAS  Google Scholar 

  21. Sasaki H, Yukiue H, Kobayashi Y et al. Elevated serum vascu-lar endothelial growth factor an basic broblast growth factorlevels in patient with thymic epithelial neoplasms. Surg Today 2003; 31: 1038–40.

    Article  Google Scholar 

  22. Okuda K, Weisberg E, Gilliland DG et al. ARG tyrosine activ-ity is inhibited by STI571. Blood 2001; 97: 2240–8.

    Article  Google Scholar 

  23. Mariani L, Beaudry C, McDonough WS et al. Death-associatedprotein 3 (DAP-3) is overexpressed in invasive glioblastoma. cells in vivo and in glioma cell lines with induced motility phe-notype in vitro. Clin Cancer Res 2001; 7: 2480–9.

    PubMed  CAS  Google Scholar 

  24. Kissil JL, Deiss LP, Bayewitch M et al. Isolation of DAP3, a novel mediator of interferon-gamma-induced cell death. J BioChem 1995; 270: 27932–6.

    CAS  Google Scholar 

  25. Cavdar Koc E, Ranasinghe A, Burkhart W et al. A new face onapoptosis: death-associated protein 3 and PDCD9 are mitochon-drial ribosomal proteins. FEBS Lett 2001; 492 (1–2): 166–70.

    Google Scholar 

  26. Kissil JL, Cohen O, Raveh T et al. Structure function analysisof an evolutionary conserved protein, DAP-3, which mediatesTNF-a and Fas-induced cell death. EMBO J 1999; 18: 353–62.

    Article  PubMed  CAS  Google Scholar 

  27. Aisemberg AC, Wilkes B, Harris NL et al. The predomonantlymphocyte in most thymomas and in nonneoplastic thymusfrom patients with myasthenia gravis is the cortical thymocytes. Clin Immunol Immunopathol 1985; 35: 130–6.

    Article  Google Scholar 

  28. Eimoto T, Tesgima K, Shirakusa T et al. Heterogeneity of epi-thelial cells and reactive components in thymomas: An ultra-structural and immunohistochemical study. Ultrastruct Pathol1986; 10: 157–73.

    PubMed  CAS  Google Scholar 

  29. Yokoyama T, Tanahashi M, Tateyama H et al. Flow-cytomet-ric diagnosis of thymoma using needle biopsy specimens. SurgToday 2003; 33: 163–8.

    Google Scholar 

  30. Li S, Juco J, Mann KP et al. The Flow cytometry in the differential diagnosis of lymphocyte-rich thymoma from precursor T-cellacute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol 2004; 121: 268–74.

    Article  PubMed  Google Scholar 

  31. Okumura M, Miyoshi S, Fujii Y et al. Clinical and functionalsigni cance of WHO classi cation on human thymic epithelialneoplasms. Am J Surg Pathol 2001; 25: 103–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, H., Ide, N., Yukiue, H. et al. Arg and DAP3 expression was correlated with human thymoma stage. Clin Exp Metastasis 21, 507–513 (2004). https://doi.org/10.1007/s10585-004-2153-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-004-2153-3

Navigation