Skip to main content

Advertisement

Log in

Bone marrow mesenchymal stem cell’s exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won’t just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton’s Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don’t have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes’ mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2(4):224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Infante A, Rodríguez CI (2018) Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res Ther 9(1):1–7. https://doi.org/10.1186/s13287-018-0995-x

    Article  CAS  Google Scholar 

  3. Pignolo RJ, Law SF, Chandra A (2021) Bone aging, cellular senescence, and osteoporosis. JBMR Plus 5(4):e10488. https://doi.org/10.1002/jbm4.10488

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C et al (2022) Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Transl Med 11(4):356–371. https://doi.org/10.1093/stcltm/szac004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Han L, Wang B, Wang R, Gong S, Chen G, Xu W (2019) The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 10(1):1–14. https://doi.org/10.1186/s13287-019-1498-0

    Article  CAS  Google Scholar 

  6. Pino AM, Rosen CJ, Rodríguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45(3):279–287. https://doi.org/10.4067/S0716-97602012000300009

    Article  PubMed  Google Scholar 

  7. Karadeniz F, Oh JH, Jo HJ, Seo Y, Kong C-S (2021) Myricetin 3-O-β-D-Galactopyranoside Exhibits Potential Anti-Osteoporotic Properties in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Stimulation of Osteoblastogenesis and Suppression of Adipogenesis. Cells 10(10):2690. https://doi.org/10.3390/cells10102690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhi F, Ding Y, Wang R, Yang Y, Luo K, Hua F (2021) Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther 12(1):1–15. https://doi.org/10.1186/s13287-021-02214-y

    Article  CAS  Google Scholar 

  9. Farr JN, Khosla S (2019) Cellular senescence in bone. Bone 121:121–133. https://doi.org/10.1016/j.bone.2019.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marie PJ (2014) Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 29(6):1311–1321. https://doi.org/10.1002/jbmr.2190

    Article  CAS  PubMed  Google Scholar 

  11. Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151(10):2026–2032. https://doi.org/10.1001/archinte.1991.00400100100017

    Article  CAS  PubMed  Google Scholar 

  12. Melton LJ (2000) Who has osteoporosis? A conflict between clinical and public health perspectives. J Bone Miner Res 15(12):2309–2314. https://doi.org/10.1359/jbmr.2000.15.12.2309

    Article  PubMed  Google Scholar 

  13. Cooper C, Campion G, Melton L (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289. https://doi.org/10.1007/BF01623184

    Article  CAS  PubMed  Google Scholar 

  14. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson AJ et al (2007) Incidence and economic burden of osteoporosis‐related fractures in the United States 2005–2025. J Bone Miner Res 22(3):465–475. https://doi.org/10.1359/jbmr.061113

    Article  PubMed  Google Scholar 

  15. Van Griensven M (2015) Preclinical testing of drug delivery systems to bone. Adv Drug Deliv Rev 94:151–164. https://doi.org/10.1016/j.addr.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208. https://doi.org/10.1002/jab.770020307

    Article  CAS  PubMed  Google Scholar 

  17. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5). https://doi.org/10.1615/critrevbiomedeng.v40.i5.10

  18. Calvert JW, Weiss LE, Sundine MJ (2003) New frontiers in bone tissue engineering. Clin Plast Surg 30(4):641–648. https://doi.org/10.1016/s0094-1298(03)00081-6

    Article  PubMed  Google Scholar 

  19. Liao Y, Zhang XL, Li L, Shen FM, Zhong MK (2014) Stem cell therapy for bone repair: a systematic review and meta-analysis of preclinical studies with large animal models. Br J Clin Pharmacol 78(4):718–726. https://doi.org/10.1111/bcp.12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephenson M, Grayson W (2018) Recent advances in bioreactors for cell-based therapies. https://doi.org/10.12688/f1000research.12533.1. F1000Res 7

  21. Lai RC, Yeo RWY, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol Elsevier. https://doi.org/10.1016/j.semcdb.2015.03.001

    Article  Google Scholar 

  22. Schmitt JM, Hwang K, Winn S, Hollinger JO (1999) Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res. https://doi.org/10.1002/jor.1100170217

    Article  PubMed  Google Scholar 

  23. Wang C, Meng H, Wang X, Zhao C, Peng J, Wang YJ et al (2016) Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit 22:226. https://doi.org/10.12659/MSM.897044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. López-Delgado L, Del Real A, Sañudo C, Garcia-Ibarbia C, Laguna E, Menendez G et al (2022) Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connect Tissue Res 63(3):243–255. https://doi.org/10.1080/03008207.2021.1894140

    Article  CAS  PubMed  Google Scholar 

  25. Lund RJ, Närvä E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13(10):732–744. https://doi.org/10.1038/nrg3271

    Article  CAS  PubMed  Google Scholar 

  26. Lou G, Chen Z, Zheng M, Liu YJE (2017) Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 49(6):e346–e346. https://doi.org/10.1038/emm.2017.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellavia D, Raimondi L, Costa V, De Luca A, Carina V, Maglio M, Giavaresi G (2018) Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim Biophys Acta Gen Subj 1862(9):1893–1901. https://doi.org/10.1016/j.bbagen.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  28. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo ABH et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9(1):1–10. https://doi.org/10.1186/1479-5876-9-47

    Article  CAS  Google Scholar 

  30. Kourembanas S (2015) Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77:13–27. https://doi.org/10.1146/annurev-physiol-021014-071641

    Article  CAS  PubMed  Google Scholar 

  31. Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L (2020) Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 256:118002. https://doi.org/10.1016/j.lfs.2020.118002

    Article  CAS  PubMed  Google Scholar 

  32. Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG et al (2021) The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment. Stem Cell Rev Rep 2021:1–19. https://doi.org/10.1007/s12015-021-10185-z

    Article  CAS  Google Scholar 

  33. Farashah MSG, Pasbakhsh P, Omidi A, Nekoonam S, Aryanpour R, Kashani IR (2019) Preconditioning with SDF-1 improves therapeutic outcomes of bone marrow-derived mesenchymal stromal cells in a mouse model of STZ-induced diabetes. Avicenna J Med Biotechnol 11(1):35

    Google Scholar 

  34. de Castro LL, Lopes-Pacheco M, Weiss DJ, Cruz FF, Rocco PRM (2019) Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med 97(5):605–618. https://doi.org/10.1007/s00109-019-01776-y

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C et al (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14(8):493–507. https://doi.org/10.1038/s41581-018-0023-5

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Cao X, Li P, Fan Y, Zhang L, Ma X et al (2021) microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci 272:119204. https://doi.org/10.1016/j.lfs.2021.119204

    Article  CAS  PubMed  Google Scholar 

  37. Qiu M, Zhai S, Fu Q, Liu D (2021) Bone marrow mesenchymal stem cells-derived exosomal microRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum Gene Ther. https://doi.org/10.1089/hum.2020.005

    Article  PubMed  Google Scholar 

  38. Xiao F, Zuo B, Tao B, Wang C, Li Y, Peng J et al (2021) Exosomes derived from cyclic mechanical stretch-exposed bone marrow mesenchymal stem cells inhibit RANKL-induced osteoclastogenesis through the NF-κB signaling pathway. Ann Transl Med 9(9). https://doi.org/10.21037/atm-21-1838

  39. Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W et al (2020) Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther 11(1):1–15. https://doi.org/10.6084/m9.figshare.8965286

    Article  Google Scholar 

  40. Tang Y, Zhou Y, Li HJ (2021) Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther 12(1):1–12. https://doi.org/10.1186/s13287-021-02138-7

    Article  Google Scholar 

  41. Álvarez-Viejo M (2020) Mesenchymal stem cells from different sources and their derived exosomes: a pre-clinical perspective. World J Stem Cells 12(2):100. https://doi.org/10.4252/wjsc.v12.i2.100

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aboushady IM, Salem ZA, Sabry D, Mohamed A (2018) Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent 10(1):e7–e13. https://doi.org/10.4317/jced.53957

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chu D-T, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL et al (2020) An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci 21(3):708. https://doi.org/10.3390/ijms21030708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robbins PD, Morelli A (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208. https://doi.org/10.1038/nri3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357. https://doi.org/10.1038/nrd3978

    Article  CAS  PubMed  Google Scholar 

  46. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  47. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8(4):307. https://doi.org/10.3390/cells8040307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X et al (2020) Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 8(1):1–18. https://doi.org/10.1038/s41413-020-0100-9

    Article  CAS  Google Scholar 

  49. Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B et al (2016) MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 26(5):407–419. https://doi.org/10.1016/j.tcm.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nomura S (2017) Extracellular vesicles and blood diseases. Int J Hematol 105(4):392–405. https://doi.org/10.1007/s12185-017-2180-x

    Article  CAS  PubMed  Google Scholar 

  51. Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J (2018) Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 39(4):501–513. https://doi.org/10.1038/aps.2017.162

    Article  CAS  PubMed  Google Scholar 

  52. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126(4):1208–1215. https://doi.org/10.1172/JCI81135

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harding C, Bioi R (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339. https://doi.org/10.1083/jcb.97.2.329

    Article  CAS  PubMed  Google Scholar 

  54. Denzer K, Kleijmeer MJ, Heijnen H, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(19):3365–3374

    Article  CAS  PubMed  Google Scholar 

  55. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. https://doi.org/10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  56. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteom 73(10):1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006

    Article  CAS  Google Scholar 

  57. Kalani A, Tyagi A, Tyagi N (2014) Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 49(1):590–600. https://doi.org/10.1007/s12035-013-8544-1

    Article  CAS  PubMed  Google Scholar 

  58. Javadi M, Rad JS, Farashah MSG, Roshangar L (2021) An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 1–13. https://doi.org/10.1007/s43032-021-00556-9

  59. Javadi M, Rad JS, Pashaiasl M, Farashah MSG, Roshangar L (2022) The effects of plasma-derived extracellular vesicles on cumulus expansion and oocyte maturation in mice. Reprod Biol 22(1):100593. https://doi.org/10.1016/j.repbio.2021.100593

    Article  CAS  PubMed  Google Scholar 

  60. Mathivanan S, Simpson RJ (2009) ExoCarta: A compendium of exosomal proteins and RNA. J Proteom 9(21):4997–5000. https://doi.org/10.1002/pmic.200900351

    Article  CAS  Google Scholar 

  61. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall J (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  62. Koppers-Lalic D, Hogenboom MM, Middeldorp JM, Pegtel D (2013) Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine. Adv Drug Deliv Rev 65(3):348–356. https://doi.org/10.1016/j.addr.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  63. Behera J, Tyagi N (2018) Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 5(5–6):181. https://doi.org/10.18632/oncoscience.421

    Article  PubMed  PubMed Central  Google Scholar 

  64. Desrochers LM, Antonyak M, Cerione R (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37(4):301–309. https://doi.org/10.1016/j.devcel.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Revenfeld ALS, Bæk R, Nielsen MH, Stensballe A, Varming K, Jørgensen M (2014) Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36(6):830–846. https://doi.org/10.1016/j.clinthera.2014.05.008

    Article  PubMed  Google Scholar 

  66. Pugholm LH, Revenfeld ALS, Søndergaard EKL, Jørgensen M (2015) Antibody-based assays for phenotyping of extracellular vesicles. Biomed Res Int. https://doi.org/10.1155/2015/524817

    Article  PubMed  PubMed Central  Google Scholar 

  67. Martínez MC, Freyssinet JM (2001) Deciphering the plasma membrane hallmarks of apoptotic cells: phosphatidylserine transverse redistribution and calcium entry. BMC Cell Biol 2(1):1–11. https://doi.org/10.1186/1471-2121-2-20

    Article  Google Scholar 

  68. Kerr JF, Wyllie AH, Currie A (1972) Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 26(4):239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90(4):1513–1522. https://doi.org/10.1172/JCI116019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38(6):754–763. https://doi.org/10.1038/aps.2017.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Masaoutis C, Theocharis S (2019) The role of exosomes in bone remodeling: implications for bone physiology and disease. Dis Markers 2019. https://doi.org/10.1155/2019/9417914

  72. Xie Y, Hu J, Wu H, Huang Z, Yan H, Shi Z (2019) Bone marrow stem cells derived exosomes improve osteoporosis by promoting osteoblast proliferation and inhibiting cell apoptosis. Eur Rev Med Pharmacol Sci 23(3):1214–1220. https://doi.org/10.26355/eurrev_201902_17014

    Article  CAS  PubMed  Google Scholar 

  73. Zhu Y, Jia Y, Wang Y, Xu J, Chai Y (2019) Impaired bone regenerative effect of exosomes derived from bone marrow mesenchymal stem cells in type 1 diabetes. Stem Cells Transl Med 8(6):593–605. https://doi.org/10.1002/sctm.18-0199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huber J, Griffin MF, Longaker MT, Quarto N (2022) Exosomes: A Tool for Bone Tissue Engineering. Tissue Eng Part B Rev 28(1):101–113. https://doi.org/10.1089/ten.TEB.2020.0246

    Article  CAS  PubMed  Google Scholar 

  75. Yang J, Zhu W, Lu J, Xie K, Fang S, Kan L (2018) Potential Therapeutic Applications of Exosomes in Bone Regenerative Medicine, in Osteogenesis and Bone Regeneration. Osteogenesis and Bone Regeneration. IntechOpen, pp41–60. https://doi.org/10.5772/intechopen.81069

  76. Xu J-F, Yang G-h, Pan X-H, Zhang S-J, Zhao C, Qiu B-S et al (2014) Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS ONE 9(12):e114627. https://doi.org/10.1371/journal.pone.0114627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z et al (2020) Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 103:196–212. https://doi.org/10.1016/j.actbio.2019.12.020

    Article  CAS  PubMed  Google Scholar 

  78. Wang Z-g, He Z-y, Liang S, Yang Q, Cheng P, Chen A-m et al (2020) Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 11(1):1–11. https://doi.org/10.1186/s13287-020-02032-8

    Article  CAS  Google Scholar 

  79. Infante A, Alcorta-Sevillano N, Macías I, Rodríguez C (2022) Educating EVs to Improve Bone Regeneration: Getting Closer to the Clinic. Int J Mol Sci 23(3):1865. https://doi.org/10.3390/ijms23031865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei J, Li H, Wang S, Li T, Fan J, Liang X et al (2014) let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev 23(13):1452–1463. https://doi.org/10.1089/scd.2013.0600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N et al (2016) Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 5(12):1620–1630. https://doi.org/10.5966/sctm.2015-0285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S et al (2009) Stromal cell–derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823. https://doi.org/10.1002/art.24330

    Article  CAS  PubMed  Google Scholar 

  83. Qin Y, Wang L, Gao Z, Chen G, Zhang C (2016) Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 6(1):1–11. https://doi.org/10.1038/srep21961

    Article  CAS  Google Scholar 

  84. Zhang J, Liu X, Li H, Chen C, Hu B, Niu X et al (2016) Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 7(1):1–14. https://doi.org/10.1186/s13287-016-0391-3

    Article  CAS  Google Scholar 

  85. Hao ZC, Lu J, Wang SZ, Wu H, Zhang YT, Xu S (2017) Stem cell-derived exosomes: a promising strategy for fracture healing. Cell Prolif 50(5):e12359. https://doi.org/10.1111/cpr.12359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang K-X, Xu L-L, Rui Y-F, Huang S, Lin S-E, Xiong J-H et al (2015) The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS ONE 10(3):e0120593. https://doi.org/10.1371/journal.pone.0120593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng Y, Zhou H, Gu P, Fan X (2014) Repair of canine medial orbital bone defects with miR-31–modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci 55(9):6016–6023. https://doi.org/10.1167/iovs.14-14977

    Article  PubMed  Google Scholar 

  88. Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury G (2002) Erratum:Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase18 in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277:33361–33368

    Article  CAS  PubMed  Google Scholar 

  89. Liu X, Li Q, Niu X, Hu B, Chen S, Song W et al (2017) Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci 13(2):232. https://doi.org/10.7150/ijbs.16951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Trohatou O, Zagoura D, Bitsika V, Pappa KI, Antsaklis A, Anagnou NP et al (2014) Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med 3(1):54–68. https://doi.org/10.5966/sctm.2013-0081

    Article  CAS  PubMed  Google Scholar 

  91. Meng YB, Li X, Li ZY, Zhao J, Yuan XB, Ren Y et al (2015) microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J Orthop Res 33(7):957–964. https://doi.org/10.1002/jor.22884

    Article  CAS  PubMed  Google Scholar 

  92. Martins M, Ribeiro D, Martins A, Reis RL, Neves N (2016) Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment. Stem Cell Reports 6(3):284–291. https://doi.org/10.1016/j.stemcr.2016.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Narayanan R, Huang CC, Ravindran S (2016) Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int 2016. https://doi.org/10.1155/2016/3808674

    Article  Google Scholar 

  94. Wang X, Omar O, Vazirisani F, Thomsen P, Ekström K (2018) Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS ONE 13(2):e0193059. https://doi.org/10.1371/journal.pone.0193059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL et al (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25(5):665–677. https://doi.org/10.1002/jor.20359

    Article  CAS  PubMed  Google Scholar 

  96. Nemoto E, Ebe Y, Kanaya S, Tsuchiya M, Nakamura T, Tamura M et al (2012) Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochem Biophys Res Commun 422(4):627–632. https://doi.org/10.1016/j.bbrc.2012.05.039

    Article  CAS  PubMed  Google Scholar 

  97. Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM et al (2010) Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res 25(2):200–210. https://doi.org/10.1359/jbmr.090806

    Article  CAS  PubMed  Google Scholar 

  98. Yang J, Shi P, Tu M, Wang Y, Liu M, Fan F et al (2014) Bone morphogenetic proteins: Relationship between molecular structure and their osteogenic activity. Food Sci Hum Wellness 3(3–4):127–135. https://doi.org/10.1016/j.fshw.2014.12.002

    Article  Google Scholar 

  99. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4(1):1–21. https://doi.org/10.1038/boneres.2016.9

    Article  CAS  Google Scholar 

  100. Kempen DH, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ et al (2010) Growth factor interactions in bone regeneration. Tissue Eng Part B Rev 16(6):551–566. https://doi.org/10.1089/ten.teb.2010.0176

    Article  CAS  PubMed  Google Scholar 

  101. Zhang WB, Zhong WJ, Wang L (2014) A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 58:59–66. https://doi.org/10.1016/j.bone.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  102. Baek WY, Lee MA, Jung JW, Kim SY, Akiyama H, de Crombrugghe B et al (2009) Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J Bone Miner Res 24(6):1055–1065. https://doi.org/10.1359/jbmr.081248

    Article  CAS  PubMed  Google Scholar 

  103. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504. https://doi.org/10.1126/science.289.5484.1501

    Article  CAS  PubMed  Google Scholar 

  104. Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS (2013) TGF-β/BMP signaling pathway is involved in cerium‐promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem 114(5):1105–1114. https://doi.org/10.1002/jcb.24451

    Article  CAS  PubMed  Google Scholar 

  105. Chen D, Li Y, Zhou Z, Xing Y, Zhong Y, Zou X et al (2012) Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts. PLoS ONE 7(12):e52948. https://doi.org/10.1371/journal.pone.0052948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhao P, Xiao L, Peng J, Qian Y, Huang C (2018) Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci 22(12):3962–3970. https://doi.org/10.26355/eurrev_201806_15280

    Article  CAS  PubMed  Google Scholar 

  107. Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M (2012) Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 34(8):1579–1587. https://doi.org/10.1007/s10529-012-0934-3

    Article  CAS  PubMed  Google Scholar 

  108. Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJ, Adema GJ et al (2010) MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19(6):877–885. https://doi.org/10.1089/scd.2009.0112

    Article  CAS  PubMed  Google Scholar 

  109. Javed A, Chen H, Ghori FY (2010) Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am 22(3):283–293. https://doi.org/10.1016/j.coms.2010.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor β1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 16(2):725–733. https://doi.org/10.1089/ten.TEA.2009.0495

    Article  CAS  PubMed  Google Scholar 

  111. Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott C-E, Knaus PJ et al (2013) miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol 45(3):696–705. https://doi.org/10.1016/j.biocel.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  112. Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G (2021) CD9, a tetraspanin target for cancer therapy? Exp Biol Med 246(9):1121–1138. https://doi.org/10.1177/1535370220981855

    Article  CAS  Google Scholar 

  113. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ishii M, Iwai K, Koike M, Ohshima S, Kudo-Tanaka E, Ishii T et al (2006) RANKL‐induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res 21(6):965–976. https://doi.org/10.1359/jbmr.060308

    Article  CAS  PubMed  Google Scholar 

  115. Solberg L, Stang E, Brorson S-H, Andersson G, Reinholt FJH (2015) Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem Cell Biol 143(2):195–207. https://doi.org/10.1007/s00418-014-1272-4

    Article  CAS  PubMed  Google Scholar 

  116. Xu S, Wang Z (2017) Bone marrow mesenchymal stem cell-derived exosomes enhance osteoclastogenesis during alveolar bone deterioration in rats. RSC Adv 7(34):21153–21163. https://doi.org/10.1039/C6RA27931G

    Article  CAS  Google Scholar 

  117. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478. https://doi.org/10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  118. Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f et al (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):1–13. https://doi.org/10.1186/s13287-015-0066-5

    Article  CAS  Google Scholar 

  119. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Badiavas E (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647. https://doi.org/10.1089/scd.2014.0316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Leucht P, Lee S, Yim N (2019) Wnt signaling and bone regeneration: Can’t have one without the other. Biomaterials 196:46–50. https://doi.org/10.1016/j.biomaterials.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  121. Lu G-d, Cheng P, Liu T, Wang Z (2020) BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis. Front Cell Dev Biol 8:608521. https://doi.org/10.3389/fcell.2020.608521

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M et al (2011) Exosomes from human CD34 + stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728. https://doi.org/10.1161/CIRCRESAHA.111.253286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Y, Jia L, Zheng Y, Li W (2018) Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 38(4). https://doi.org/10.1042/BSR20180448

  124. Yu X, Zeng Y, Bao M, Wen J, Zhu G, Cao C et al (2020) Low-magnitude vibration induces osteogenic differentiation of bone marrow mesenchymal stem cells via miR‐378a‐3p/Grb2 pathway to promote bone formation in a rat model of age‐related bone loss. FASEB J 34(9):11754–11771. https://doi.org/10.1096/fj.201902830RRR

    Article  CAS  PubMed  Google Scholar 

  125. Cen X, Pan X, Zhang B, Huang W, Xiong X, Huang X et al (2021) Mechanosensitive Non-Coding RNAs in Osteogenesis of Mesenchymal Stem Cells. Cell Transpl 30:09636897211051382. https://doi.org/10.1177/09636897211051382

    Article  Google Scholar 

  126. Misiaka D, Lambrou GI (2021) The role of microRNAs in osteοporosis: A brief review. J Res Pract Musculoskelet Syst 5(4):134–139. https://doi.org/10.22540/JRPMS-05-134

    Article  Google Scholar 

  127. Wang L, You X, Zhang L, Zhang C, Zou W (2022) Mechanical regulation of bone remodeling. Bone Res 10(1):1–15. https://doi.org/10.1038/s41413-022-00190-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J et al (2017) Mechanical stress regulates bone metabolism through microRNAs. J Cell Physiol 232(6):1239–1245. https://doi.org/10.1002/jcp.25688

Download references

Acknowledgements

The authors are grateful to the staff and experts of the Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences for their help and support. This article was done with Grant number: (62516) and ethical number: (IR.TBZMED.REC.1398.039).

This study was financially supported by the Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.

Funding

This study was financially supported by the Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. This article was done with Grant number: (62516) and ethical number: (IR.TBZMED.REC.1398.039).

Author information

Authors and Affiliations

Authors

Contributions

In connection with this review article, the main idea was given by LR. The initial draft of the article was written by MSGHF. The figures design of the article was done by MJ. AHM, JSR and SKSH critically revised the manuscript. Also, all authors commented on previous versions of the manuscript and they read and approved the final manuscript. In general, all authors were involved in writing and editing parts of this article.

Corresponding author

Correspondence to Leila Roshangar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

In related to this review study, the authors have no relevant financial or non-financial interests to disclose.

Conflict of interest

The authors declare that they have no conflict of interest.

Statements of the authors

We declare that this manuscript is review, has not been published before and is not currently being considered for publication elsewhere. We understand that the Corresponding Author is the sole contact for the Editorial process. she is responsible for communicating with the other authors about progress, submissions, revisions and final approval of proofs.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami Farashah, M.S., Javadi, M., Mohammadi, A. et al. Bone marrow mesenchymal stem cell’s exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type. Mol Biol Rep 49, 12203–12218 (2022). https://doi.org/10.1007/s11033-022-07807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07807-1

Keywords

Navigation