Skip to main content
Log in

Trehalose biosynthetic pathway regulates filamentation response in Saccharomyces cerevisiae

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Diploid cells of Saccharomyces cerevisiae undergo either pseudohyphal differentiation or sporulation in response to depletion of carbon and nitrogen sources. Distinct signaling pathways regulate filamentation and sporulation in response to nutrient limitation. How these pathways are coordinated for implementing distinct cell fate decisions in response to similar nutritional cues is an enigma. Although the role of trehalose pathway in sporulation has been extensively studied, it’s possible role in pseudohyphal differentiation has been unexplored.

Methods and results

Briefly, tps1 and tps2 mutants were tested for their ability to form pseudohyphae independently as well as in the background of GPR1 and RAS2 mutations. Here, we demonstrate that disruption of TPS1 but not TPS2 inhibits pseudohyphae formation. Interestingly, deletion of GPR1 suppresses the above defect. Further genetic analysis revealed that TPS1 and TPS2 exert opposing effects in triggering filamentation.

Conclusion

We provide new insights into the role of an otherwise well-known pathway of trehalose biosynthesis in pseudohyphal differentiation. Based on additional data we propose that downstream signaling, mediated by cAMP may be modulated by nutrient mediated differential regulation of RAS2 by TPS1 and TPS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gagiano M, Bauer FF, Pretorius IS (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2:433–470. https://doi.org/10.1016/S1567-1356(02)00133-2

    Article  CAS  PubMed  Google Scholar 

  2. Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704

    Article  CAS  PubMed  Google Scholar 

  3. Gimeno CJ, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  CAS  PubMed  Google Scholar 

  4. Iyer RS, Das M, Bhat PJ (2008) Pseudohyphal differentiation defect due to mutations in GPCR and ammonium signaling is suppressed by low glucose concentration: a possible integrated role for carbon and nitrogen limitation. Curr Gen 54:71–81. https://doi.org/10.1007/s00294-008-0202-1

    Article  CAS  Google Scholar 

  5. Lengeler KB, Davidson RC, Souza CD, Harashima T, Shen W, Wang P, Pan X, Waug M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. MMBR 64:746–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madhani HD (2000) Interplay of intrinsic and extrinsic signals in yeast differentiation. PNAS 97:13461–13463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cullen PJ, Sprague GF (2012) The regulation of filamentous growth in yeast. Genetics 190:23–49. https://doi.org/10.1534/genetics.111.127456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Honigberg SM, Purnapatre K (2003) Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116:2137–2147. https://doi.org/10.1242/jcs.00460

    Article  CAS  PubMed  Google Scholar 

  9. Jungbluth M, Taxis C (2012) Acetate regulation of spore formation is under the control of the Ras/Cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae. Eukaryot Cell 11:1021–1032. https://doi.org/10.1128/EC.05240-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ (2016) Nutrient control of yeast gametogenesis is mediated by TORC1, PKA and energy availability. PLoS Genet 12:1–26. https://doi.org/10.1371/journal.pgen.1006075

    Article  CAS  Google Scholar 

  11. van De Velde S, Thevelein JM (2008) Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell 7:286–293. https://doi.org/10.1128/EC.00276-07

    Article  CAS  PubMed  Google Scholar 

  12. Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17:1236–1247. https://doi.org/10.1093/emboj/17.5.1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J (2008) A Mep2-dependent transcriptional pofile links permease function to gene expression during pesudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 19:3028–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boeckstaens M, André B, Marini AM (2007) The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 64:534–546

    Article  CAS  PubMed  Google Scholar 

  15. Boeckstaens M, Llinares E, Van Vooren P, Marini AM (2014) The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein. Nat Comm 5:3101. https://doi.org/10.1038/ncomms4101

    Article  CAS  Google Scholar 

  16. Xue Y, Hirsc JP (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p G α subunit and functions in a Ras-independent pathway. EMBO J 17:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santangelo GM (2006) GLucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harashima T, Heitman J (2005) Gα subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 16:4557–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyer RS, Bhat PJ (2017) KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae. Curr Gen 63:851–859. https://doi.org/10.1007/s00294-017-0684-9

    Article  CAS  Google Scholar 

  20. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuchin S, Vyas VK, Carlson M (2003) Role of the yeast Snf1 protein kinase in invasive growth. Biochem Soc Trans 31:175–177. https://doi.org/10.1042/bst0310175

    Article  CAS  PubMed  Google Scholar 

  24. Apweiler E, Sameith K, Margaritis T, Brabers N, van de Pasch L, Bakker LV, van Leenen D, Holstege FCP, Kemmeren P (2012) Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genomics 13:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Silva-Udawatta MN, Cannon JF (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol Microbiol 40:1345–1356. https://doi.org/10.1046/j.1365-2958.2001.02477.x

    Article  PubMed  Google Scholar 

  26. Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? TIBS 20:3–9

    CAS  PubMed  Google Scholar 

  27. Zaragoza O, Blazquez MA, Gancedo C (1998) Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bact 180:3809–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70:1772–1782. https://doi.org/10.1128/IAI.70.4.1772-1782.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maidan MM, De Rop L, Relloso M, Diez-Orejas R, Thevelein JM, Van Dijck P (2008) Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infect Immun 76:1686–1694. https://doi.org/10.1128/IAI.01497-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chary SN, Hicks GR, Yoon GC, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in arabidopsis. Plant Physiol 146:97–107. https://doi.org/10.1104/pp.107.107441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in yeast genetics cold spring harbor. Cold Spring Harbor Laboratory, New York, pp 1–157

    Google Scholar 

  32. Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  PubMed  Google Scholar 

  33. Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16:7008–7018. https://doi.org/10.1093/emboj/16.23.7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peeters K, Van Leemputte F, Fischer B, Bonini BM, Quezada H, Tsytlonok M, Haesen D, Vanthienen W, Bernardes N, Gonzalez-Blas CB, Janssens V, Tompa P, Versées W, Thevelein JM (2017) Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 8:922. https://doi.org/10.1038/s41467-017-01019-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O’Toole TG, Wahl SA, Teusink B (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343:1245114. https://doi.org/10.1126/science.1245114

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki C, Hori Y, Kashiwagi Y (2003) Screening and characterization of transposon-insertion mutants in a pseudohyphal strain of Saccharomyces cerevisiae. Yeast 20:407–415

    Article  CAS  PubMed  Google Scholar 

  38. Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R (2015) Revisiting yeast trehalose metabolism. Curr Gen 61:263–274. https://doi.org/10.1007/s00294-014-0450-1

    Article  CAS  Google Scholar 

  39. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bact 143:1384–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serneels J, Tournu H, DijckP V (2012) Tight control of trehalose content is required for efficient heat-induced cell e.longation in Candida albicans. J Biol Chem 287:36873–36882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vicente RL, Spina L, Gómez JPL, Dejean S, Parrou JL, François JM (2018) Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae. Microb Cell 5:444–459. https://doi.org/10.15698/mic2018.10.651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 11:227–230

    Article  Google Scholar 

  44. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Van der zee P, Wiemken A (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  CAS  PubMed  Google Scholar 

  45. Deroover S, Ghillebert R, Broeckx T, Winderickx J, Rolland F (2016) Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res 16:1–15. https://doi.org/10.1093/femsyr/fow036

    Article  CAS  Google Scholar 

  46. Se Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  47. Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D (2015) Characterizing the in vivo role of trehalosein Saccharomyces cerevisiae using the AGT1 transporter. PNAS 112:6116–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tomova AA, Kujumdzieva AV, Petrova VY (2019) Carbon source influences Saccharomyces cerevisiae yeast cell survival strategies: quiescence or sporulation. Biotechnol Biotechnol Equip 33:1464–1470. https://doi.org/10.1080/13102818.2019.1674188

    Article  CAS  Google Scholar 

  49. Kubler E, Mosch HU, Rupp S, Lisanti MP (1997) Gpa2p, a G-protein α-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272:20321–20323

    Article  CAS  PubMed  Google Scholar 

  50. Mosch HU, Kubler E, Krappman S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10:1325–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ryan O, Shapiro RS, Kurat CF et al (2012) Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353–1356

    Article  CAS  PubMed  Google Scholar 

  52. Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J (2000) The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding awarded to Dr. Revathi Iyer, by the Department of Science and Technology, India, under the DST WOS-A scheme (SR/WOS-A/LS-58/2017). We thank Prof. R. Patkar, for graciously permitting the use of his laboratory facilities to study the effect of cAMP on the the ras2 mutant.

Funding

This work was supported by funding awarded to Dr. Revathi Iyer, by the Department of Science and Technology, India, under the DST WOS-A scheme (Grant No. SR/WOS-A/LS-58/2017).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dr. RI. The first draft of the manuscript was written by Dr. RI. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Revathi Iyer.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, R., Bhat, P.J. Trehalose biosynthetic pathway regulates filamentation response in Saccharomyces cerevisiae. Mol Biol Rep 49, 9387–9396 (2022). https://doi.org/10.1007/s11033-022-07792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07792-5

Keywords

Navigation