Skip to main content
Log in

KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Diploid cells of Saccharomyces cerevisiae undergo pseudohyphal differentiation in response to nutrient depletion. Although this dimorphic transition occurs due to signals originating from carbon and nitrogen limitation, how these signals are coordinated and integrated is not understood. Results of this study indicate that the pseudohyphal defect of the mep2∆ mutant is overcome upon disruption of KRH2/GPB1 but not KRH1/GPB2. Further, the agar invasion defect observed in a mep2 mutant strain is suppressed only by deleting KRH2 and not KRH1. Thus, the results presented indicate that MEP2 functions by inhibiting KRH2 to trigger filamentation response when glucose becomes limiting. Biochemical data and phenotypic response to glucose replenishment reveal that KRH1 and KRH2 are differentially regulated by glucose and ammonium to induce pseudohyphae formation via the cAMP-PKA pathway. In contrast to the current view, this study clearly demonstrates that, KRH1 and KRH2 are not functionally redundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Battle M, Lu A, Green DA, Xue Y, Hirsch JP (2003) Krh1p and Krh2p act downstream of the Gpa2p Gα subunit to negatively regulate haploid invasive growth. J Cell Sci 116:701–711

    Article  Google Scholar 

  • Boeckstaens M, Andre B, Marini AM (2007) The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 64:534–546

    Article  CAS  PubMed  Google Scholar 

  • Boeckstaens M, Llinares E, Van Vooren P, Marini A M (2014) The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transporter protein. Nature Comm. doi:10.1038/ncomms4104

    Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Budhwar R, Lu A, Hirsch JP (2010) Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit. Mol Biol Cell 21:3749–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhwar R, Fang G, Hirsch JP (2011) Kelch repeat proteins control yeast PKA activity in response to nutrient availability. Cell cycle 10:767–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen PJ, Sprague GF (2012) The regulation of filamentous growth in yeast. Genetics 190:23–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999) Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181:6497–6508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  CAS  PubMed  Google Scholar 

  • Harashima T, Heitman J (2002) The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits. Mol Cell 10:163–173

    Article  CAS  PubMed  Google Scholar 

  • Harashima T, Heitman J (2005) Gα subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 16:4557–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harashima T, Anderson S, Yates JR III, Heitman J (2006) The Kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 22:819–830

    Article  CAS  PubMed  Google Scholar 

  • Iyer RS, Das M, Bhat PJ (2008) Pseudohyphal differentiation defect due to mutations in GPCR and ammonium signaling is suppressed by low glucose concentration: a possible integrated role for carbon and nitrogen limitation. Curr Gen 54:71–81

    Article  CAS  Google Scholar 

  • Jin R, Dobry CJ, McCown PJ, Kumar A (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CM, Jiang YW (2005) Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 22:79–90

    Article  CAS  PubMed  Google Scholar 

  • Kraakman L, Lemaire K, Ma P, Teunissen AWRH, Donaton MCV, Dijck PV, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth and diploid pseudohyphal growth. Mol Cell Biol 22:3994–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leadsham JE, Gourlay CW (2010) cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 11:1–14

    Article  Google Scholar 

  • Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein α homolog. EMBO J 16:7008–7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation Saccharomyces cerevisiae. EMBO J 17:1236–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J (2000) The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu A, Hirsch JP (2005) Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by kelch repeat homologues. Eucaryotic Cell 4:1794–1800

    Article  CAS  Google Scholar 

  • Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucl Acids Res 25:451–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papp L, Sipiczki M, Miklós I (2016) Expression pattern and phenotypic characterization of the mutant strain reveals target genes and processes regulated by pka1 in the dimorphic fission yeast Schizosaccharomyces japonicus. Curr Genet doi:10.1007/s00294-016-0651-x

    PubMed  Google Scholar 

  • Peeters T, Louwet W, Gelade R, Nauwelaers D, Thevelein JM, Versele M (2006) Kelch-repeat proteins interacting with the Gα protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. PNAS 103:13034–13039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters T, Versele M, Thevelein JM (2007) Directly from Gα to protein kinase A: the kelch repeat protein bypass of adenylate cyclase. Trends Biochem Sci 32:547–554

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Schuster S (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem Sci 30:20–25

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  CAS  PubMed  Google Scholar 

  • Phan VT, Ding VW, Li F, Chalkley RJ, Burlingame A, McCormick F (2010) The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol Cell Biol 30:2264–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM (2009) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10:134–149

    Article  PubMed  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J (2008) A Mep2-dependent transcriptional pofile links permease function to gene expression during pesudohypahl growth in Saccharomyces cerevisiae. Mol Biol Cell 19:3028–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56:1–32

    Article  CAS  PubMed  Google Scholar 

  • Som T, Armstrong KA, Volkert FC, Broach JR (1988) Autoregulation of 2 µm circle gene expression provides a model for maintenance of stable copy levels. Cell 52:27–37

    Article  CAS  PubMed  Google Scholar 

  • Soontorngun N (2016) Reprogramming of nonfermentative metabolism by stress–responsive transcription factors in the yeast Saccharomyces cerevisiae. Curr Genet. doi:10.1007/s00294-016-0609-z

    PubMed  Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63:343–352

    Article  PubMed  Google Scholar 

  • van den Berg B, Chenbath A, Jefferies D, Basle A, Khalid S, Rutherford JC (2016) Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nature Comm. doi:10.1038/ncomms11337

    Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Batlle M, Hirsch JP (1998) GPR1 Encodes a putative G protein-coupled receptor that associates with the Gpa2 Gα subunit and functions in a Ras –independent pathway. EMBO J 17:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H (1997) G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophy Res Commun 240: 287–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by financial assistance provided to Dr. Revathi S. Iyer by the Department of Science and Technology, India under the WOS-‘A’ scheme (SR/WOS-A/LS-152/2010). We thank Prof. J. Heitman for graciously providing strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paike Jayadeva Bhat.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, R.S., Bhat, P.J. KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae . Curr Genet 63, 851–859 (2017). https://doi.org/10.1007/s00294-017-0684-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0684-9

Keywords

Navigation