Skip to main content
Log in

Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background:

Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. Lipid levels are regarded as a major risk factor for CAD, and epigenetic mechanisms might be involved in the regulation of CAD development. This study was designed to investigate the association between the DNA methylation status of 8 lipid metabolism-related genes and the risk of CAD in the Chinese Han population.

Methods:

A total of 260 individuals were sampled in this study, including 120 CAD cases and 140 normal healthy controls. DNA methylation status was tested via targeted bisulfite sequencing.

Results:

The results indicated a significant association between hypomethylation of the APOC3, CETP and APOC1 gene promoters and the risk of CAD. Individuals with higher methylation levels of the APOA5 and LIPC gene promoters had increased risks for CAD. In addition, ANGPTL4 methylation level was significantly associated with CAD in males but not females. There were no significant differences in the methylation levels of the APOB and PCSK9 gene promoters between CAD patients and controls.

Conclusions

The methylation status of the APOC3, APOA5, LIPC, CETP and APOC1 gene promoters may be associated with the development of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    Article  PubMed  Google Scholar 

  2. Wang F, Xu CQ, He Q et al (2011) Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 43(4):345–349

    Article  CAS  PubMed  Google Scholar 

  3. Foody J, Yong H, Ji L et al (2013) Unique and Varied Contributions of Traditional CVD Risk Factors: A Systematic Literature Review of CAD Risk Factors in China. Clin Med Insights Cardiol. ; 2013(7):59–86

  4. Duan L, Liu C, Hu J et al (2018) Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 28(5):311–319

    Article  CAS  PubMed  Google Scholar 

  5. Pjanic M, Miller CL, Wirka R et al (2016) Genetics and Genomics of Coronary Artery Disease. Curr Cardiol Rep 18(10):102

    Article  PubMed  PubMed Central  Google Scholar 

  6. Musunuru K, Kathiresan S (2019) Genetics of Common, Complex Coronary Artery Disease. Cell 177(1):132–145

    Article  CAS  PubMed  Google Scholar 

  7. Ghaznavi H, Mahmoodi K, Soltanpour MS (2018) A preliminary study of the association between the ABCA1 gene promoter DNA methylation and coronary artery disease risk. Mol Biology Res Commun 7(2):59–65

    CAS  Google Scholar 

  8. Su J, Li J, Yu Q et al (2019) Association of PON1 gene promoter DNA methylation with the risk of Clopidogrel resistance in patients with coronary artery disease. J Clin Lab Anal 33(5):e22867

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhuang J, Peng W, Li H et al (2012) Methylation of p15INK4b and Expression of ANRIL on Chromosome 9p21 Are Associated with Coronary Artery Disease. PLoS ONE 7(10):e47193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li LC, Dahiya R, Methprimer (2002) Designing Primers for Methylation PCRs. Bioinformatics 18(11):1427–1431

    Article  CAS  PubMed  Google Scholar 

  11. Agha G et al “Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease.“ Circulation140.8(2019):645–657

  12. Zhao X et al (2022) “F2RL3 Methylation in the Peripheral Blood as a Potential Marker for the Detection of Coronary Heart Disease: A Case-Control Study.“ Front Genet. 24:833923

  13. Xia Y, Brewer A, Bell JT “DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies.“Clinical Epigenetics13.1(2021):1–16

  14. Taskinen MR, Packard CJ, Boren J (2019) Emerging Evidence that ApoC-III Inhibitors Provide Novel Options to Reduce the Residual CVD. Curr Atheroscler Rep 21(8):27

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akoumianakis I, Zvintzou E, Kypreos K et al (2021) ANGPTL3 and Apolipoprotein C-III as Novel Lipid-Lowering Targets. Curr Atheroscler Rep 23(5):20

    Article  CAS  PubMed  Google Scholar 

  16. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG et al (2014) Loss-of-Function Mutations in APOC3 and Risk of Ischemic Vascular Disease. N Engl J Med 3711(1):32–41

    Article  Google Scholar 

  17. Crosby J, Peloso GM, Auer PL et al (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371(1):22–31

    Article  PubMed  Google Scholar 

  18. Li WW, Dammerman MM, Smith J et al (1996) Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest 96(6):2601–2605

    Article  Google Scholar 

  19. Pollex RL, Ban MR, Young TK et al (2007) Association between the – 455T > C promoter polymorphism of the APOC3 gene and the metabolic syndrome in a multi-ethnic sample. BMC Med Genet 8(80):1471–2350

    Google Scholar 

  20. Olivieri O, Stranieri C, Bassi A et al (2002) ApoC-III gene polymorphisms and risk of coronary artery disease[J]. J Lipid Res 43(9):1450–1457

    Article  CAS  PubMed  Google Scholar 

  21. Jong MC, Rensen PC, Dahlmans VE et al (2001) Apolipoprotein C-III deficiency accelerates triglyceride hydrolysis by lipoprotein lipase in wild-type and apoE knockout mice. J Lipid Res 42(10):1578–1585

    Article  CAS  PubMed  Google Scholar 

  22. Yan H, Niimi M, Matsuhisa F et al (2020) Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits.Arteriosclerosis Thrombosis and Vascular Biology. ; 40(9)

  23. Ding Y, Wang Y, Hong Z et al (2011) Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res 20(4):867

    Article  CAS  PubMed  Google Scholar 

  24. Ito Y, Azrolan N, O’Connell A et al (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970):790–793

    Article  CAS  PubMed  Google Scholar 

  25. Lauer SJ, Walker D, Elshourbagy NA et al (1988) Two copies of the human apolipoprotein C-I gene are linked closely to the apolipoprotein E gene. J Biol Chem 263(15):7277–7286

    Article  CAS  PubMed  Google Scholar 

  26. Gautier T, Masson D, Jong MC et al (2002) Apolipoprotein CI Deficiency Markedly Augments Plasma Lipoprotein Changes Mediated by Human Cholesteryl Ester Transfer Protein (CETP) in CETP Transgenic/ApoCI-knocked Out Mice. J Biol Chem 277(35):31354

    Article  CAS  PubMed  Google Scholar 

  27. Gautier T, Masson D, de Barros JP et al (2000) Human Apolipoprotein C-I Accounts for the Ability of Plasma High Density Lipoproteins to Inhibit the Cholesteryl Ester Transfer Protein Activity. J Biol Chem 275(48):37504–37509

    Article  CAS  PubMed  Google Scholar 

  28. Shachter NS, Ebara T, Ramakrishnan R et al (1996) Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein Cl. J Clin Invest 98(3):846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jong MC, Dahlmans VE, Gorp P et al (1996) In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Investig 98(10):2259–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berbee JF, Hoogt CC, Sundararaman D et al (2005) Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J Lipid Res 46(2):297–306

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Jiang XC, Sakai N et al (1993) A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins. J Clin Invest 92(4):2060–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arai T, Yamashita S, Sakai N et al (1996) A novel nonsense mutation (G181X) in the human cholesteryl ester transfer protein gene in Japanese hyperalphalipoproteinemic subjects. J Lipid Res 37(10):2145

    Article  CAS  PubMed  Google Scholar 

  33. Boekholdt SM, Thompson JF (2003) Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 44(6):1080–1093

    Article  CAS  PubMed  Google Scholar 

  34. Inazu A, Jiang XC, Haraki T et al (1994) Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest 94(5):1872–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arai T, Tsukada T, Murase T et al (2000) Particle size analysis of high density lipoproteins in patients with genetic cholesteryl ester transfer protein deficiency. Clin Chim Acta 301(1–2):103–117

    Article  CAS  PubMed  Google Scholar 

  36. Mabuchi H, Nohara A, Inazu A (2014) Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors. Molecules & Cells 37(11):777–784

    Article  Google Scholar 

  37. Aaron I, Sayed-Tabatabaei FA, jajou OT et al (2004) The – 514 C->T hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis.Journal of Clinical Endocrinology & Metabolism. (8):3858–3863

  38. Hodoglugil U, Williamson DW, Mahley RW (2010) Polymorphisms in the hepatic lipase gene affect plasma HDL-cholesterol levels in a Turkish population. J Lipid Res 51(2):422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guay SP, Brisson D, Lamarche B et al (2014) Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia[J]. Epigenetics 9(5):718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Zhou Y, Zhu L et al (2018) Genome-wide analysis reveals that altered methylation in specific CpG loci is associated with childhood obesity. J Cell Biochem 119(9):7490–7497

    Article  CAS  PubMed  Google Scholar 

  41. Radhakrishna U, Albayrak S, Alpay-Savasan Z et al (2016) Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS). PLoS ONE 11(5):e0154010

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao T, Zhao J (2010) Association of the apolipoprotein A5 gene – 1131 T > C polymorphism with fasting blood lipids: A meta-analysis in 37859 subjects. BMC Med Genet 11:120

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Ban MR, Kennedy BA et al (2008) APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia. Nat Clin Pract Cardiovasc Med 5(11):730–737

    Article  CAS  PubMed  Google Scholar 

  44. Kerkel K et al (2008) “Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. " Nat Genet 40:904

    Article  CAS  PubMed  Google Scholar 

  45. Lu T et al “Whole-genome bisulfite sequencing in systemic sclerosis provides novel targets to understand disease pathogenesis.“BMC Medical Genomics12.1(2019):1–12

  46. Dayeh TA et al “Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets.“ Diabetologia 56.5(2013):1036–1046

  47. Zhou D et al “High Fat Diet and Exercise Lead to a Disrupted and Pathogenic DNA Methylome in Mouse Liver.“ Epigenetics12.1(2016):00–00

  48. Martin EM, Fry RC (2018). “Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations.“ Annual Review of Public Health39.1

  49. Suderman M et al (2014) “Childhood abuse is associated with methylation of multiple loci in adult DNA.“ BMC Medical Genomics,7,1(2014-03-11) 7.1:13

  50. Gillberg L et al “PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects–impact of 5 days of high-fat overfeeding.“ Metabolism-clinical & Experimental63.2(2014):263–271

  51. Jacobsen SC et al (2012) Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55:3341–3349

    Article  CAS  PubMed  Google Scholar 

  52. Hahn O et al (2017) Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol 18(1):56

    Article  PubMed  PubMed Central  Google Scholar 

  53. Romain, Barrès et al (2012) “Acute exercise remodels promoter methylation in human skeletal muscle. " Cell Metabolism 153:405–411

    Google Scholar 

  54. Rönn T et al (2013) A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue. PLoS Genet 9:e1003572

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dogan MV et al “The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American women.“ BMC Genomics,15,1(2014-02-22) 15.1(2014):151

  56. Philibert RA et al (2014) “A pilot examination of the genome-wide DNA methylation signatures of subjects entering and exiting short-term alcohol dependence treatment programs. " Epigenetics 9 9:1212–1219

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Shanghai Science and Technology Development Foundation (SY20221RUE01). We also thank Hu Liu from Shanghai Lehao Bio-Science Company for his technical support in gene sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, Y., Huang, R. et al. Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease. Mol Biol Rep 49, 9373–9378 (2022). https://doi.org/10.1007/s11033-022-07789-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07789-0

Keywords

Navigation