Skip to main content
Log in

IDH1 mutation activates mTOR signaling pathway, promotes cell proliferation and invasion in glioma cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Glioma is the most common type of brain tumors and isocitrate dehydrogenase (IDH1) gene is the most prominent molecular marker about the disease prognosis, response to therapy and patient survival. There are conflicting data about the effect of IDH1 mutation on glial cell proliferation, invasion and migration characteristics. The effect of IDH1 mutation on mTOR signaling pathway, which has key roles in tumorigenesis process, is limited and previous data is controversial. We aimed to explore the effect of wild type and mutant IDH1 overexpression on glioma cells and investigated the correlation with mTOR signaling pathway associated genes.

Methods and Results

U87-MG and A172 cells were transfected with different IDH1 mutant gene overexpressing (R132H, R132L, R132S, R132C) viral vectors. Cell proliferation, cell invasion and migration analysis as well as quantitative PCR analysis with the mutant glioma cell lines were performed. Forty-two patient derived glioma cells were obtained from patients with different glioma subtypes and cancer cells were enriched by culturing cells. Overexpression of both mutant and wild type IDH1 gene promoted the cell proliferation, but only IDH1 mutation increased cell invasion and migration. The expression of IDH1 mutation activated mTOR signaling via upregulation of WNTA, PRKAA2, GSK3B and MTOR genes as well as phosphorylated mTOR protein level.

Conclusions

Our results highlighted IDH1 mutation upregulate mTOR signaling pathway and promote cell proliferation, invasion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article/as supplementary information files. Raw results data files can be shared upon request.

References

  1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251 Epub 2021/06/30. doi: https://doi.org/10.1093/neuonc/noab106. PubMed PMID: 34185076; PubMed Central PMCID: PMCPMC8328013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirchia K, Richardson TE (2020) Beyond IDH-Mutation: Emerging Molecular Diagnostic and Prognostic Features in Adult Diffuse Gliomas. Cancers (Basel) 12(7). doi: https://doi.org/10.3390/cancers12071817. PubMed PMID: 32640746; PubMed Central PMCID: PMCPMC7408495 Epub 2020/07/10

  3. Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X et al (2014) IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res 74(12):3317–3331 Epub 2014/04/24. doi: https://doi.org/10.1158/0008-5472.CAN-14-0772-T. PubMed PMID: 24755473; PubMed Central PMCID: PMCPMC4885639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Penard-Lacronique V, Bernard OA (2016) IDH1, histone methylation, and so forth. Cancer Cell 30(2):192–194

    Article  CAS  PubMed  Google Scholar 

  5. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474 Epub 2009/06/26. doi: https://doi.org/10.1007/s00401-009-0561-9. PubMed PMID: 19554337.

    Article  PubMed  Google Scholar 

  7. Yang H, Ye D, Guan K-L, Xiong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18(20):5562–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi J, Sun B, Shi W, Zuo H, Cui D, Ni L et al (2015) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumor Biology 36(2):655–662

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Zuo H, Ni L, Xia L, Zhao L, Gong M et al (2014) An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol Sci 35(6):839–845

    Article  PubMed  Google Scholar 

  10. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25(26):4127–4136

    Article  CAS  PubMed  Google Scholar 

  11. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discovery 8(8):627–644

    Article  CAS  PubMed  Google Scholar 

  12. Regad T (2015) Targeting RTK signaling pathways in cancer. Cancers 7(3):1758–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol 4:64 Epub 2014/05/02. doi: https://doi.org/10.3389/fonc.2014.00064. PubMed PMID: 24782981; PubMed Central PMCID: PMCPMC3995050.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karar J, Maity A (2011) PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci 4:51 Epub 20111202. doi: https://doi.org/10.3389/fnmol. 2011.00051. PubMed PMID: 22144946; PubMed Central PMCID: PMCPMC3228996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carbonneau M, Gagné LM, Lalonde M-E, Germain M-A, Motorina A, Guiot M-C et al (2016) The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun 7(1):1–12

    Article  Google Scholar 

  16. Zhu H, Zhang Y, Chen J, Qiu J, Huang K, Wu M et al (2017) IDH1 R132H mutation enhances cell migration by activating AKT-mTOR signaling pathway, but sensitizes cells to 5-FU treatment as NADPH and GSH are reduced. PLoS ONE 12(1):e0169038

    Article  PubMed  PubMed Central  Google Scholar 

  17. Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD et al (2019) PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 9(1):1–15

    Article  CAS  Google Scholar 

  18. Shen X, Wu S, Zhang J, Li M, Xu F, Wang A et al (2020) Wild–type IDH1 affects cell migration by modulating the PI3K/AKT/mTOR pathway in primary glioblastoma cells. Mol Med Rep 22(3):1949–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seidel S, Garvalov BK, Acker T (2015) Isolation and culture of primary glioblastoma cells from human tumor specimens. Stem Cell Protocols: Springer; p. 263 – 75

  20. Asem MS, Buechler S, Wates RB, Miller DL, Stack MS (2016) Wnt5a Signaling in Cancer.Cancers (Basel). ; 8(9). Epub 20160826. doi: 10.3390/cancers8090079. PubMed PMID: 27571105; PubMed Central PMCID: PMCPMC5040981.

  21. Ross FA, MacKintosh C, Hardie DG (2016) AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 283(16):2987–3001. doi: https://doi.org/10.1111/febs.13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leung AK, Robson WL (2007) Tuberous sclerosis complex: a review. J Pediatr Health Care 21(2):108–114. doi: https://doi.org/10.1016/j.pedhc.2006.05.004. PubMed PMID: 17321910

    Article  PubMed  Google Scholar 

  23. Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. ;37(1):19–24. doi: https://doi.org/10.1038/ng1494. PubMed PMID: 15624019

  24. Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proceedings of the National Academy of Sciences. ;109(6):2021-6

  25. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22. doi: https://doi.org/10.1016/j.ccr.2007.05.008. PubMed PMID: 17613433

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Yuan H, Weaver CD, Mao J, Farr GH 3, Sussman DJ et al (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J 18(15):4233–4240. doi: https://doi.org/10.1093/emboj/18.15.4233. PubMed PMID: 10428961; PubMed Central PMCID: PMCPMC1171499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968. doi: https://doi.org/10.1016/j.cell.2006.06.055. PubMed PMID: 16959574

    Article  CAS  PubMed  Google Scholar 

  28. Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28(11):573–576

    Article  CAS  PubMed  Google Scholar 

  29. Wakimoto H, Tanaka S, Curry WT, Loebel F, Zhao D, Tateishi K et al (2014) Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res 20(11):2898–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Birner P, Pusch S, Christov C, Mihaylova S, Toumangelova-Uzeir K, Natchev S et al (2014) Mutant IDH1 inhibits PI3K/Akt signaling in human glioma. Cancer 120(16):2440–2447

    Article  CAS  PubMed  Google Scholar 

  31. Cui D, Ren J, Shi J, Feng L, Wang K, Zeng T et al (2016) R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. Int J Biochem Cell Biol 73:72–81

    Article  CAS  PubMed  Google Scholar 

  32. Hu H, Wang Z, Liu Y, Zhang C, Li M, Zhang W et al (2015) Genome-wide transcriptional analyses of Chinese patients reveal cell migration is attenuated in IDH1-mutant glioblastomas. Cancer Lett 357(2):566–574 Epub 20141212. doi: https://doi.org/10.1016/j.canlet.2014.12.018. PubMed PMID: 25511738.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324(5924):261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu J, Li D, Zeng Y, Wang H, Feng W, Qi S et al (2019) IDH1 mutation promotes proliferation and migration of glioma cells via EMT induction. J BUON 24(6):2458–2464 PubMed PMID: 31983120

    PubMed  Google Scholar 

  35. Liu Y, Lu Y, Li A, Celiku O, Han S, Qian M et al (2020) mTORC2/Rac1 pathway predisposes cancer aggressiveness in IDH1-mutated glioma. Cancers 12(4):787

    Article  CAS  PubMed Central  Google Scholar 

  36. Yan B, Hu Y, Ma T, Wang Y (2018) IDH1 mutation promotes lung cancer cell proliferation through methylation of Fibulin-5. Open Biol. ;8(10). Epub 20181010. doi: https://doi.org/10.1098/rsob.180086. PubMed PMID: 30305430; PubMed Central PMCID: PMCPMC6223204

  37. Wang JB, Dong DF, Wang MD, Gao K (2014) IDH1 overexpression induced chemotherapy resistance and IDH1 mutation enhanced chemotherapy sensitivity in Glioma cells in vitro and in vivo. Asian Pac J Cancer Prev 15(1):427–432 PubMed PMID: 24528069

    Article  PubMed  Google Scholar 

  38. Li S, Chou AP, Chen W, Chen R, Deng Y, Phillips HS et al (2013) Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neurooncology 15(1):57–68

    Google Scholar 

  39. Avsar T, Sursal A, Turan G, Yigit BN, Altunsu D, Cantasir K et al (2020) Development of a Rapid and Sensitive IDH1/2 Mutation Detection Method for Glial Tumors and a Comparative Mutation Analysis of 236 Glial Tumor Samples. Mol Diagn Ther 24(3):327–338

    Article  PubMed  Google Scholar 

  40. Pusch S, Schweizer L, Beck AC, Lehmler JM, Weissert S, Balss J et al (2014) D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma. Acta Neuropathol Commun 2:19 Epub 20140214. doi: https://doi.org/10.1186/2051-5960-2-19. PubMed PMID: 24529257; PubMed Central PMCID: PMCPMC3937031.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Bahcesehir University (BAU), Scientific Research Projects Council, (Project number BAP.2018 − 2.01), and The Scientific and Technological Research Council of Turkey (TUBITAK, project number 118S539).

Funding

This study was funded by Bahcesehir University (BAU), Scientific Research Projects Council, (Project number BAP.2018 − 2.01), and The Scientific and Technological Research Council of Turkey (TUBITAK, project number 118S539).

Author information

Authors and Affiliations

Authors

Contributions

TA and TBK conceived and designed the study and wrote the manuscript. TA, TBK, MDO and GT participated in data acquisition, analysis and interpretation of data. TK provided the tumor samples and patient information and participated in critical discussions. Also, all authors and acknowledged contributors have read and approved the manuscript and state that the content of this manuscript, in part or in full, has not been published elsewhere in any form. Authors stated their consent for participation and publication of the study.

Corresponding author

Correspondence to Timucin Avsar.

Ethics declarations

Conflict of interests

The authors have no personal, financial or institutional interest in any of the methods, materials, or devices described in this article. Authors declare no conflict of interests.

Ethical Standards

This study was approved by Ethical Committee of Bahcesehir University, School of Medicine. All the procedures were performed regarding ethical adherence. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avsar, T., Kose, T.B., Oksal, M.D. et al. IDH1 mutation activates mTOR signaling pathway, promotes cell proliferation and invasion in glioma cells. Mol Biol Rep 49, 9241–9249 (2022). https://doi.org/10.1007/s11033-022-07750-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07750-1

Keywords

Navigation