Skip to main content

Advertisement

Log in

Umbilical cord mesenchymal stem cells and breast cancer: a good therapeutic candidate or not? A minireview

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer (BC), as the most common cancer among women, affects a great number of subjects around the world. This heterogenic disease is divided into several types and subtypes, and each subtype has various phenotypes and genotypes. Against BC, several options have been proposed, such as surgery, radiotherapy, and chemotherapeutic agents. However, these approaches may have detrimental effects on health and life quality of patients. Hence, harnessing a therapeutic tool with high effectiveness and low side effects is required. Recently, mesenchymal stem cells (MSCs) have created a new window to treat various disorders, like cancer, and among these, umbilical cord (UC)-derived MSCs have acquired much interest due to their advantages. Therefore, in this narrative review, the influences of UC-derived MSCs on BC were reviewed and summarized with a focus on the molecular mechanisms involved in its pathogenesis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets and Therapy 11:151

    Google Scholar 

  2. Lei S, Zheng R, Zhang S, Chen R, Wang S, Sun K et al (2021) Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol Med 18(3):900–909

    Article  PubMed Central  Google Scholar 

  3. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1(2):109–126

    PubMed  PubMed Central  Google Scholar 

  4. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  5. Wu J, Hicks C (2021) Breast Cancer Type Classification Using Machine Learning.J Pers Med. ; 11(2)

  6. Wang L, Zhang S, Wang X (2021) The metabolic mechanisms of breast cancer metastasis. Front Oncol 10:2942

    Google Scholar 

  7. Barros-Oliveira MdC, Costa-Silva DR, Dos Santos AR, Pereira RO, Soares-Júnior JM (2021) Silva BBd. Influence of CYP19A1 gene expression levels in women with breast cancer: a systematic review of the literature.Clinics. ; 76

  8. Ammembal AMK, Udupa K (2021) Combined Oral Contraceptives and Breast Cancer: an Unsolved Conundrum. Indian J Gynecologic Oncol 19(4):67

    Article  Google Scholar 

  9. Wang Y, Zhou X, Wang W, Wu Y, Qian Z, Peng Q (2021) Sodium bicarbonate, an inorganic salt and a potential active agent for cancer therapy.Chinese Chemical Letters.

  10. Hussain Y, Islam L, Khan H, Filosa R, Aschner M, Javed S (2021) Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects.Phytotherapy Research.

  11. Luan S, Zeng X, Zhang C, Qiu J, Yang Y, Mao C et al (2021) Advances in Drug Resistance of Esophageal Cancer: From the Perspective of Tumor Microenvironment.Frontiers in Cell and Developmental Biology. ; 9(623)

  12. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V (2020) Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol 8:43

    Article  PubMed  PubMed Central  Google Scholar 

  13. ArefNezhad R, Motedayyen H, Mohammadi A (2021) Therapeutic Aspects of Mesenchymal Stem Cell-Based Cell Therapy with a Focus on Human Amniotic Epithelial Cells in Multiple Sclerosis: A Mechanistic Review. Int J Stem Cells 14(3):241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rao VV, Vu MK, Ma H, Killaars AR, Anseth KS (2019) Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioeng Translational Med 4(1):51–60

    Article  CAS  Google Scholar 

  15. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Markarian CF, Frey GZ, Silveira MD, Chem EM, Milani AR, Ely PB et al (2014) Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol Lett 36(4):693–702

    Article  CAS  PubMed  Google Scholar 

  17. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22(5):649–658

    Article  CAS  PubMed  Google Scholar 

  18. Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 23(4):934–943

    Article  CAS  PubMed  Google Scholar 

  19. Ma F, Chen D, Chen F, Chi Y, Han Z, Feng X et al (2015) Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8-and interleukin-6-dependent induction of CD44+/CD24-cells. Cell Transplant 24(12):2585–2599

    Article  PubMed  Google Scholar 

  20. Rahmani F, Ferns GA, Talebian S, Nourbakhsh M, Avan A, Shahidsales S (2020) Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene 737:144459

    Article  CAS  PubMed  Google Scholar 

  21. King J, Mir H, Singh S (2017) Chapter Four - Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. In: Lakshmanaswamy R (ed) Progress in Molecular Biology and Translational Science, vol 151. Academic Press, pp 113–136

  22. Hulka BS, Liu ET, Lininger RA (1994) Steroid hormones and risk of breast cancer. Cancer 74(S3):1111–1124

    Article  CAS  PubMed  Google Scholar 

  23. Buys SS, Sandbach JF, Gammon A, Patel G, Kidd J, Brown KL et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123(10):1721–1730

    Article  CAS  PubMed  Google Scholar 

  24. Nazari E, ArefNezhad R, Tabadkani M, Farzin AH, Tara M, Hassanian SM et al (2021) Using correlation matrix for the investigation the interaction of genes and traditional risk factor in breast cancer. Meta Gene 30:100947

    Article  CAS  Google Scholar 

  25. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L et al (2018) Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases 5(2):77–106

    Article  CAS  Google Scholar 

  26. Renoir J-M, Marsaud V, Lazennec G (2013) Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 85(4):449–465

    Article  CAS  PubMed  Google Scholar 

  27. Saha Roy S, Vadlamudi RK (2012) Role of estrogen receptor signaling in breast cancer metastasis. International journal of breast cancer. ;2012

  28. Said TK, Conneely OM, Medina D, O’Malley BW, Lydon JP (1997) Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology 138(9):3933–3939

    Article  CAS  PubMed  Google Scholar 

  29. Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R et al (2004) Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24(16):7260–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415

    Article  CAS  PubMed  Google Scholar 

  31. Lundberg A, Weinberg R (1999) Control of the cell cycle and apoptosis1. Eur J Cancer 35(14):1886–1894

    Article  CAS  PubMed  Google Scholar 

  32. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erb B-related gene in a human mammary carcinoma. Science 229(4717):974–976

    Article  CAS  PubMed  Google Scholar 

  33. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  34. Brennan KR, Brown A (2004) Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia 9(2):119–131

    Article  PubMed  Google Scholar 

  35. Bafico A, Liu G, Goldin L, Harris V, Aaronson SA (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6(5):497–506

    Article  CAS  PubMed  Google Scholar 

  36. King TD, Suto MJ, Li Y (2012) The wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113(1):13–18

    Article  CAS  PubMed  Google Scholar 

  37. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17(1):45–51

    Article  CAS  PubMed  Google Scholar 

  38. MacDonald BT, Tamai K, He X (2009) Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9(9):665–674

    Article  CAS  PubMed  Google Scholar 

  40. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A (2005) The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett 217(1):73–86

    Article  CAS  PubMed  Google Scholar 

  41. Filippi I, Carraro F, Naldini A (2015) Interleukin-1β affects MDAMB231 breast cancer cell migration under hypoxia: role of HIF-1α and NFκB transcription factors.Mediators of Inflammation. ; 2015

  42. Naldini A, Filippi I, Miglietta D, Moschetta M, Giavazzi R, Carraro F (2010) Interleukin-1β regulates the migratory potential of MDAMB231 breast cancer cells through the hypoxia-inducible factor-1α. Eur J Cancer 46(18):3400–3408

    Article  CAS  PubMed  Google Scholar 

  43. Bhattacharjee HK, Bansal VK, Nepal B, Srivastava S, Dinda AK, Misra MC (2016) Is interleukin 10 (IL10) expression in breast cancer a marker of poor prognosis? Indian J Surg Oncol 7(3):320–325

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao S, Wu D, Wu P, Wang Z, Huang J (2015) Serum IL-10 predicts worse outcome in cancer patients: A meta-analysis. PLoS ONE 10(10):e0139598

    Article  PubMed  PubMed Central  Google Scholar 

  45. Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS (2013) Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol 43(6):1518–1528

    Article  CAS  PubMed  Google Scholar 

  46. Wege AK, Weber F, Kroemer A, Ortmann O, Nimmerjahn F, Brockhoff G (2017) IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget 8(2):2731

    Article  PubMed  Google Scholar 

  47. Trabert B, Sherman ME, Kannan N, Stanczyk FZ (2020) Progesterone and Breast Cancer. Endocr Rev 41(2):320–344

    Article  Google Scholar 

  48. Hankinson SE, Eliassen AH (2007) Endogenous estrogen, testosterone and progesterone levels in relation to breast cancer risk. J Steroid Biochem Mol Biol 106(1–5):24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian J, Ran B, Zhang C, Yan D, Li X (2018) Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression.Brazilian Journal of Medical and Biological Research. ; 51

  50. Shah NR, Chen H (2014) MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World J Clin Oncol 5(2):48–60

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li T, Zhang C, Ding Y, Zhai W, Liu K, Bu F et al (2015) Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway. Oncol Rep 34(3):1469–1477

    Article  CAS  PubMed  Google Scholar 

  53. Chao KC, Yang HT, Chen MW (2012) Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell–cell contact and internalization. J Cell Mol Med 16(8):1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohta N, Ishiguro S, Kawabata A, Uppalapati D, Pyle M, Troyer D et al (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS ONE 10(5):e0123756

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ma Y, Hao X, Zhang S, Zhang J (2012) The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat 133(2):473–485

    Article  CAS  PubMed  Google Scholar 

  56. Mirabdollahi M, Haghjooyjavanmard S, Sadeghi-Aliabadi H (2019) An anticancer effect of umbilical cord-derived mesenchymal stem cell secretome on the breast cancer cell line. Cell Tissue Banking 20(3):423–434

    Article  CAS  PubMed  Google Scholar 

  57. Zhou X, Li T, Chen Y, Zhang N, Wang P, Liang Y et al (2019) Mesenchymal stem cell–derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol 54(5):1843–1852

    CAS  PubMed  Google Scholar 

  58. Khazaei-Poul Y, Shojaei S, Koochaki A, Ghanbarian H, Mohammadi-Yeganeh S (2021) Evaluating the influence of Human Umbilical Cord Mesenchymal Stem Cells-derived exosomes loaded with miR-3182 on metastatic performance of Triple Negative Breast Cancer cells. Life Sci 286:120015

    Article  CAS  PubMed  Google Scholar 

  59. Di G-h, Liu Y, Lu Y, Liu J, Wu C, Duan H-F (2014) IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS ONE 9(11):e113572

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Hu J, Sun S, Li F, Cao W, Wang Y et al (2015) Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Exp Ther Med 9(4):1192–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen C-J, Chan T-F, Chen C-C, Hsu Y-C, Long C-Y, Lai C-S (2016) Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget 7(23):34172–34179

    Article  PubMed  PubMed Central  Google Scholar 

  62. Du L, Tao X, Shen X (2021) Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer 28(4):829–837

    Article  PubMed  Google Scholar 

  63. Cao S, Guo J, He Y, Alahdal M, Tang S, Zhao Y et al (2018) Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy. Artif Cells Nanomed Biotechnol 46(sup1):642–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The figures were created by the web-based software BioRender.

Funding

This work was not financially supported.

Author information

Authors and Affiliations

Authors

Contributions

Anahita Tavakoli, Mohammad Saeed Kahrizi and Kimia Safa contributed to the acquisition, analysis, and interpretation of data for the work. Reza ArefNezhad and Fatemeh Rezaei-Tazangi contributed to the write-up of the review article.

Corresponding author

Correspondence to Reza ArefNezhad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval:

This is a review article that summarizes past studies and the references used in the text.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, A., Kahrizi, M.S., Safa, K. et al. Umbilical cord mesenchymal stem cells and breast cancer: a good therapeutic candidate or not? A minireview. Mol Biol Rep 49, 9017–9022 (2022). https://doi.org/10.1007/s11033-022-07739-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07739-w

Keywords

Navigation