Skip to main content

Advertisement

Log in

CircRNAs: novel therapeutic targets in multiple myeloma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Circular RNA (circRNA) is a type of non-coding RNA that has recently attracted the attention of researchers. Multiple myeloma (MM) is a hematological malignancy with a dismal prognosis that indicates a pressing need for better treatment alternatives, particularly in terms of biological indicators. According to recent research findings, the presence of circRNA is also closely related to the incidence and progression of malignant hemopathy. There have been, however, only a few investigations of circRNA in MM.

Material and methods

This review will be on the biological properties and functions of circRNA in MM and a discussion of the clinical utility of circRNA in the diagnosis, prognosis, and treatment of MM.

Conclusions

CircRNA is involved in gene transcription, translation, and epigenetic modification as well as the regulation of cancer cell proliferation, invasion, and metastasis, and hence, promotes or inhibits the occurrence and progression of MM. Therefore, circRNA holds promise as a potential future MM biomarker.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of ciRNA by avoiding lariat debranching

Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

BTZ:

Bortezomib

CDK2:

Cyclin-dependent kinase 2

ceRNA:

Competing endogenous RNA

ciRNA:

Intronic circRNA

CIN:

Chromosomal instability

circRNA:

Circular RNA

ecircRNA:

Exonic circRNA

eicircRNA:

Exonic-intronic circRNA

exo-circRNA:

Exosomal circular RNA

FISH:

Fluorescence in situ hybridization

HD:

Healthy donor

lncRNA:

Long noncoding RNA

MM:

Multiple myeloma

miRNA:

MicroRNA

MRE:

MiRNA response element

mRNA:

Messenger RNA

ncRNA:

Non-coding RNA

OS:

Overall survival

PFS:

Progression-free surviva

PN:

Peripheral neuropathy

RBP:

RNA-binding protein

snRNP:

Small nuclear ribonucleoprotein

TLR4:

Toll-like receptor-4

YAP:

Yes-associated protein

YY1:

Yin Yang 1

References

  1. Moreau P et al (2013) Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi133-7

    Article  PubMed  Google Scholar 

  2. Rajkumar SV et al (2014) International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15(12):e538-48

    Article  PubMed  Google Scholar 

  3. Derman BA, Kosuri S, Jakubowiak A (2022) Knowing the unknowns in high risk multiple myeloma. Blood Rev 51:100887

    Article  PubMed  Google Scholar 

  4. Li J et al (2020) Roles of noncoding RNAs in drug resistance in multiple myeloma. J Cell Physiol 235(11):7681–7695

    Article  CAS  PubMed  Google Scholar 

  5. Lin Z et al (2020) The role of circular RNAs in hematological malignancies. Genomics 112(6):4000–4008

    Article  CAS  PubMed  Google Scholar 

  6. Tang X et al (2021) Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 19:910–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Q et al (2019) Emerging roles of noncoding RNAs in multiple myeloma: A review. J Cell Physiol 234(6):7957–7969

    Article  CAS  PubMed  Google Scholar 

  8. Zhang P, Wu W, Chen Q, Chen M (2019) Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 16(3):20190027

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapranov P et al (2007) RNA Maps Reveal New RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  CAS  PubMed  Google Scholar 

  10. Li L-J et al (2017) Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res 361(1):1–8

    Article  CAS  PubMed  Google Scholar 

  11. Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 187:31–44

    Article  CAS  PubMed  Google Scholar 

  12. Cocquerelle C et al (1993) Mis-splicing yields circular RNA molecules. Faseb j 7(1):155–60

    Article  CAS  PubMed  Google Scholar 

  13. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna 19(2):141–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kristensen LS et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  15. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–8

    Article  CAS  PubMed  Google Scholar 

  16. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–8

    Article  CAS  PubMed  Google Scholar 

  17. Meng S et al (2019) Epigenetics in neurodevelopment: emerging role of circular RNA. Front Cell Neurosci 13:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cortés-López M et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liang D et al (2017) The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68(5):940-954.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang XO et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu M et al (2019) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 16(7):899–905

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lyu D, Huang S (2017) The emerging role and clinical implication of human exonic circular RNA. RNA Biol 14(8):1000–1006

    Article  PubMed  Google Scholar 

  23. Capel B et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–30

    Article  CAS  PubMed  Google Scholar 

  24. Hansen TB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. Embo j 30(21):4414–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14(8):1028–1034

    Article  PubMed  Google Scholar 

  26. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–85

    Article  CAS  PubMed  Google Scholar 

  27. Nair AA et al (2016) Circular RNAs and their associations with breast cancer subtypes. Oncotarget 7(49):80967–80979

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taheri M et al (2021) The role and clinical potentials of circular RNAs in prostate cancer. Front Oncol 11:781414

    Article  PubMed  PubMed Central  Google Scholar 

  29. Werfel S et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–7

    Article  CAS  PubMed  Google Scholar 

  30. Ruan H et al (2019) Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med 11(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akhter R (2018) Circular RNA and alzheimer’s disease. Adv Exp Med Biol 1087:239–243

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y et al (2021) Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis 8(4):412–423

    Article  CAS  PubMed  Google Scholar 

  33. Li Z et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–64

    Article  PubMed  Google Scholar 

  34. Wu TY et al (2014) MiR-19a is correlated with prognosis and apoptosis of laryngeal squamous cell carcinoma by regulating TIMP-2 expression. Int J Clin Exp Pathol 7(1):56–63

    PubMed  Google Scholar 

  35. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  36. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelly S et al (2015) Exon skipping is correlated with exon circularization. J Mol Biol 427(15):2414–2417

    Article  CAS  PubMed  Google Scholar 

  38. Li Y et al (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18(9):1646–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  40. Wang H et al (2022) Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol Ther 234:108123

    Article  CAS  PubMed  Google Scholar 

  41. Piwecka M et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. https://doi.org/10.1126/science.aam8526

    Article  PubMed  Google Scholar 

  42. Salzman J et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–11

    Article  CAS  PubMed  Google Scholar 

  44. Shao Y, Chen Y (2016) Roles of circular RNAs in neurologic disease. Front Mol Neurosci 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li RC et al (2018) CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis 9(8):838

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang F et al (2019) Cis-acting circ-CTNNB1 promotes β-Catenin signaling and cancer progression via DDX3-mediated transactivation of YY1. Cancer Res 79(3):557–571

    Article  CAS  PubMed  Google Scholar 

  47. Du WW et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–58

    Article  PubMed  PubMed Central  Google Scholar 

  48. Abdelmohsen K et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liang WC et al (2019) Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol 20(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xia X et al (2019) A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 18(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang M et al (2018) A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37(13):1805–1814

    Article  CAS  PubMed  Google Scholar 

  52. Yang Y et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3):304–15

    Article  CAS  Google Scholar 

  53. Legnini I et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22-37.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Y et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin M, Wei G, Sun X (2018) Circ-UBR5: an exonic circular RNA and novel small nuclear RNA involved in RNA splicing. Biochem Biophys Res Commun 503(2):1027–1034

    Article  CAS  PubMed  Google Scholar 

  56. Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21(8):475–490

    Article  CAS  PubMed  Google Scholar 

  57. Lin H et al (2021) Novel insights into exosomal circular RNAs: redefining intercellular communication in cancer biology. Clin Transl Med 11(12):e636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu L, Zhang F, Li J (2021) CircRNA circ_0001821 predicts an unfavorable prognosis and promotes the proliferation of multiple myeloma. Hematology 26(1):716–723

    Article  CAS  PubMed  Google Scholar 

  59. Zhou F et al (2021) Circular RNA protein tyrosine kinase 2 promotes cell proliferation, migration and suppresses apoptosis via activating microRNA-638 mediated MEK/ERK, WNT/β-Catenin signaling pathways in multiple myeloma. Front Oncol 11:648189

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tang X et al (2021) BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther 6(1):361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tian FQ et al (2021) Inhibition of hsa_circ_0003489 shifts balance from autophagy to apoptosis and sensitizes multiple myeloma cells to bortezomib via miR-874–3p/HDAC1 axis. J Gene Med 23(9):e3329

    Article  CAS  PubMed  Google Scholar 

  62. Chen F et al (2020) Effect of the up-regulation of circular RNA Hsa_circ_0069767 derived from C-KIT on the biological behavior of multiple myeloma cells. Cancer Manag Res 12:11321–11331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. White ME, Fenger JM, Carson WE 3rd (2019) Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 337:48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y et al (2020) Circ_0007841 promotes the progression of multiple myeloma through targeting miR-338–3p/BRD4 signaling cascade. Cancer Cell Int 20:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song Y et al (2020) Hsa_Circ_0007841 enhances multiple myeloma chemotherapy resistance through upregulating ABCG2. Technol Cancer Res Treat 19:1533033820928371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao M et al (2019) hsa_circ_0007841: a novel potential biomarker and drug resistance for multiple myeloma. Front Oncol 9:1261

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang Y et al (2020) Depletion of circ_0007841 inhibits multiple myeloma development and BTZ resistance via miR-129–5p/JAG1 axis. Cell Cycle 19(23):3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu S et al (2021) circRNA circ-MYBL2 is a novel tumor suppressor and potential biomarker in multiple myeloma. Hum Cell 34(1):219–228

    Article  CAS  PubMed  Google Scholar 

  69. Liu F et al (2021) Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 169(3):327–336

    Article  CAS  PubMed  Google Scholar 

  70. Chen F et al (2020) Circular RNA circ-CDYL sponges miR-1180 to elevate yes-associated protein in multiple myeloma. Exp Biol Med (Maywood) 245(11):925–932

    Article  CAS  Google Scholar 

  71. Houshmand M et al (2018) Long non-coding RNA PVT1 as a novel candidate for targeted therapy in hematologic malignancies. Int J Biochem Cell Biol 98:54–64

    Article  CAS  PubMed  Google Scholar 

  72. Ghetti M et al (2020) Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 19(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang M et al (2018) Down-regulation of miR-203a by lncRNA PVT1 in multiple myeloma promotes cell proliferation. Arch Med Sci 14(6):1333–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gu C et al (2021) CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer 20(1):84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu D, Wang Y, Li H, Peng S, Tan H, Huang Z. Circular RNA circ-CCT3 promotes bortezomib resistance in multiple myeloma via modulating miR-223-3p/BRD4 axis. Anticancer Drugs 33(1):e145–e154

  76. Fang W et al (2021) CircRERE confers the resistance of multiple myeloma to bortezomib depending on the regulation of CD47 by exerting the sponge effect on miR-152–3p. J Bone Oncol 30:100381

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu J et al (2020) CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615–3p/PRKCD axis in multiple myeloma. Life Sci 262:118506

    Article  CAS  PubMed  Google Scholar 

  78. Bach D-H, Lee SK, Sood AK (2019) Circular RNAs in cancer. Mol ther. Nucleic acids 16:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin H et al (2021) A machine learning-based model to predict survival after transarterial chemoembolization for BCLC stage B hepatocellular carcinoma. Front Oncol 11:608260

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xiang Y, Xu X, Yang B, Wu Z, Jiang R, Xie Y. Circular RNA_0000190 and its target microRNA-767-5p are dysregulated, and they are related to risk stratification as well as prognosis in multiple myeloma patients. Ir J Med Sci 191(2):671–679

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu X et al (2020) hsa_circRNA_101237: a novel diagnostic and prognostic biomarker and potential therapeutic target for multiple myeloma. Cancer Manag Res 12:2109–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun R et al (2021) Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related myocardial damage. Cancer Cell Int 21(1):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang Y et al (2021) Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related peripheral neuropathy. Cell Signal 78:109872

    Article  CAS  PubMed  Google Scholar 

  84. Luo Y, Gui R (2020) Circulating exosomal CircMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol 37(4):248–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Feng Y et al (2019) CircRNA circ_0000190 inhibits the progression of multiple myeloma through modulating miR-767–5p/MAPK4 pathway. J Exp Clin Cancer Res 38(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhou F et al (2020) Comprehensive profiling of circular RNA expressions reveals potential diagnostic and prognostic biomarkers in multiple myeloma. BMC Cancer 20(1):40

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China 82170198, 81870164, 81372543, and 81170500 to JD.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Du.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Du, J. CircRNAs: novel therapeutic targets in multiple myeloma. Mol Biol Rep 49, 10667–10676 (2022). https://doi.org/10.1007/s11033-022-07668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07668-8

Keywords

Navigation