Skip to main content
Log in

Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Backgrounds

The narrow genetic basis of cucumber makes breeding of this species difficult. CRISPR/Cas9 system is  characteristic of  simple design, low cost and  high efficiency, which has opened a new path for cucumber functional genetics and the development of cucumber mocular breeding. However, the immature genetic transformation system is the main limiting factor for applying this technology in cucumber.

Methods and Results

In this study, a Histochemical β-glucuronidase (GUS) assay was used to analyze the effect of various parameters, including slight scratch of explants, pre-culture time, acetosyringone (AS) concentration, infection time in Agrobacterium solution, and co-culture period on the transformation efficiency. The results showed that the explants slightly scratched after cutting, pre-cultured for 1 day, Agrobacterium bacterial solution containing AS, and 20 min length of infection could significantly increase the GUS staining rate of explants. On this basis, two sequences with high specificity (sgRNA-1 and sgRNA-2) targeted different loci of gene CsGCN5 were designed. The corresponding vectors Cas9-sgRNA-1 and Cas9-sgRNA-2 were constructed and transformed using the above-optimized cucumber genetic transformation system, and three and two PCR positive lines were obtained from 210 and 207 explants, respectively. No sequence mutation at target loci of CsGCN5 was detected in the Cas9-sgRNA-1 transformed three PCR positive lines. However, one mutant line with targeted homozygous change was recognized from the Cas9-sgRNA-2 transformed two PCR positive lines.

Conclusion

In this study, 2.4‰ of total explants had directed mutation in the CsGCN5 gene. The results in the present study would be beneficial to further optimize and improve the efficiency of the genetic transformation of cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667e697

    Article  Google Scholar 

  2. Li J, Li Y, Ma L (2021) Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. aBIOTECH. https://doi.org/10.1007/s42994-021-00042-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  7. Shan S, Soltis PS, Soltis DE, Yang B (2020) Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Appl Plant Sci 8(1):e11314

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Malzahn AA, Sretenovic S, Qi Y (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 5:778–794

    Article  PubMed  Google Scholar 

  9. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  10. Kane NS, Vora M, Varre KJ, Padgett RW (2017) Efficient screening of CRISPR/Cas9-induced events in drosophila using a Co-CRISPR strategy. G3 Genes Genet 7(1):87–93

    CAS  Google Scholar 

  11. Oliva R, Ji CH, Atienza GG, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li CH, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet-Loedin IH, Cruz CV, Szurek B, Frommer WB, White FF, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37:1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modifcation in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nekrasov V, Staskawicz B, Weigel D (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693

    Article  CAS  PubMed  Google Scholar 

  14. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J, Gao C (2013) Targeted genome modifcation of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  15. Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y (2019) A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theor Appl Genet 132:113–123

    Article  CAS  PubMed  Google Scholar 

  16. Wang SL, Ku SS, Xing-Guo YE, Cong-Fen HE, Kwon SY, Choi PS (2015) Current status of genetic transformation technology developed in cucumber (Cucumis satavus, L.). J Integr Agric 14(3):469–482

    Article  CAS  Google Scholar 

  17. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J-Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  18. Fonseca JA (2021) Studies on regeneration and genetic transformation in cucumber (Cucumis sativus L.) via Agrobacterium tumefaciens (in Spanish). PhD. Spain. https://doi.org/10.4995/Thesis/10251/90405

  19. Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Huang S, Sun J, Yang L (2017) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10(12):1575–1578

    Article  CAS  PubMed  Google Scholar 

  20. Nanasato Y, Konagaya K, Okuzaki A, Mai T, Tabei Y (2012) Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7(3):267–276

    Article  PubMed  Google Scholar 

  21. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35(12):205–218

    Article  CAS  PubMed  Google Scholar 

  22. Rajagopalan PA, Perltreves R (2005) Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience 40(2):443–450

    Article  Google Scholar 

  23. Vengadesan G, Anand RP, Selvaraj N, Perl-Treves R, Ganapathi A (2005) Transfer and expression of npt II and bar, genes in cucumber ( Cucumis satavus, L.). In Vitro Cell Dev Biol Plant 41(1):17–21

    Article  CAS  Google Scholar 

  24. Wang J, Zhang S, Wang X, Wang L, Xu H, Wang X, Shi Q, Wei M, Yang F (2013) Agrobacterium-mediated transformation of cucumber (Cucumis sativus, L.) using a sense mitogen-activated protein kinase gene (CsNMAPK). Plant Cell Tissue Organ Cult 113(2):269–277

    Article  CAS  Google Scholar 

  25. Selvaraj N, Kasthurirengan S, Vasudevan A, Manickavasagam M, Choi CW, Ganapathi A (2010) Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 46(4):329–337

    Article  CAS  Google Scholar 

  26. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRIPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan L, Wei ZZ, Yang ZR, Li FG, Wang Z (2021) Updated mechanisms of GCN5-The monkey king of the plant kingdom in plant development and resistance to abiotic stresses. Cell 10(5):979

    Article  CAS  Google Scholar 

  28. Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou D (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19(7):899–909

    Article  CAS  PubMed  Google Scholar 

  29. Benhamed M, Martinmagniette M L, Taconnat L, Bitton F, Servet C, De R C, De B M, Buysschaert C, Rombauts S, Villarroel R, Aubourg S, Beynon J, Bhalerao P R, Coupland G, Gruissem W, Menke L H, Weisshaar B, Renou J P, Zhou D, Hilson P (2008) Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J 56(3):493–504

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, Xing J, Liu X, Liu Z, Yao Y, Hu Z, Peng H, Xin M, Zhou D, Zhang Y, Ni Z (2016) Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3). Plant J 88(5):794–808

    Article  CAS  PubMed  Google Scholar 

  31. Cohen R, Schocken J, Kaldis A, Vlachonasios KE, Hark AT, Mccain ER (2009) The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta 230(6):1207–1221

    Article  CAS  PubMed  Google Scholar 

  32. Kornet N, Scheres B (2009) Members of the GCN5 histone acetyltransferase complex regulate plethora-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell 21(4):1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Servet C, Condee SN, Zhou DX, Ranjeva R, Zhou DX, Haiech J (2010) Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3(4):670–677

    Article  CAS  PubMed  Google Scholar 

  34. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15(3):626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu Z, Song N, Zheng M, Liu X, Liu Z, Xing J, Ma J, Guo W, Yao Y, Peng H, Xin M, Zhou D, Ni Z, Sun Q (2015) Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84(6):1178–1191

    Article  CAS  PubMed  Google Scholar 

  36. Mao Y, Pavangadkar KA, Thomashow MF, Triezenberg SJ (2006) Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochem Biophys Acta 1759:69–79. https://doi.org/10.1016/j.bbaexp.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  37. Wang T, Xing J, Liu Z, Zheng M, Yao Y, Hu Z, Peng H, Xin M, Zhou D, Ni Z (2019) Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot 21:21

    Google Scholar 

  38. Xing J, Wang T, Liu Z, Xu J, Yao Y, Hu Z, Peng H, Xin M, Yu F, Zhou D, Ni Z (2015) GENERAL CONTROL NONREPRESSED PROTEIN5-mediated histone acetylation of FERRIC REDUCTASE DEFECTIVE3 contributes to iron homeostasis in Arabidopsis. Plant Physiol 168(4):1309–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Am J Biochem Biotechnol 78(6):836–840

    Google Scholar 

  40. Ren DL, Chen FF, Wang H, Qin YG, Zhang Y, Li YH (2017) Construction of expression vector of defense genes CsHIR1 from cucumber and its genetic transformation research. Acta Agriculturae Boreali-occidentalis Sinica 26(2):255–261 (in Chinese)

    CAS  Google Scholar 

  41. Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y (2011) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Article  PubMed  Google Scholar 

  42. Zhu C, Chen Z (2005) Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell Tissue Organ Cult 81(1):45–53

    Article  CAS  Google Scholar 

  43. Liu PP, Jiang ZS, Wang ML, Bi HG, Ai XZ (2012) Expression vector construction of rubisco activase gene CsRCA and genetic transformation to cucumber. Acta Horticulturae Sinica 05:869–878 (in Chinese)

    Google Scholar 

  44. Janani C, Sundararajan B, Ranjitha Kumari BD (2019) Construction and transformation of peroxisome proliferator activated receptor gamma (RnPPARγ) gene using Agrobacterium tumefaciens into Glycine max L. Merr. Gene Rep 16:100427

    Article  Google Scholar 

  45. Baskaran P, Soós V, Balázs E, Staden VJ (2016) Shoot apical meristem injection: a novel and efficient method to obtain transformed cucumber plants. S Afr J Bot 103:210–215

    Article  CAS  Google Scholar 

  46. Cao B, Lei J, Chen G, Cao P, Liu X, Chen Q, Wei X (2011) Testing of disease-resistance of pokeweed antiviral protein gene (PacPAP) in transgenic cucumber (Cucumis sativus). Afr J Biotechnol 10(36):6883–6890

    CAS  Google Scholar 

  47. Geng S, Sohail H, Cao H, Sun J, Zhi C, Zhou L, Wang W, Ye R, Yang L, Bie Z (2022) An efficient root transformation system for CRISPR/Cas9-based analyses of shoot – root communication in cucurbit crops. Hortic Res 9:uhab082

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  49. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  50. Romero FM, Gatica-Arias A (2019) CRISPR/Cas9: development and application in rice breeding. Rice Sci 26(005):265–281

    Article  Google Scholar 

  51. Bao AL, Chen HF, Chen LM, Chen SL, Hao QN, GuoW QDZ, Shan ZH, Zhong L, Yuan SL, Zhang CJ, Zhang XJ, Liu BH, Kong FJ, Li X, Zhou XA, Phan TLS, Cao D (2019) CRISPR /Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol 19:131

    Article  PubMed  PubMed Central  Google Scholar 

  52. Janga MR, Campbell LAM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum, l.). Plant Mol Biol 94(4–5):349–360

    Article  CAS  PubMed  Google Scholar 

  53. Kui L, Chen H, Zhang W, He S, Xiong Z, Zhang Y, Yan L, Zhong C, He F, Chen J, Zeng P, Zhang G, Yang S, Dong Y, Wang W, Cai J (2016) Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front Plant Sci 7(30):2036

    PubMed  Google Scholar 

  54. Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  PubMed  Google Scholar 

  56. Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in YL’s lab was supported by the National Natural Science Foundation of China (31772300 and 31471891) and the Shaanxi Province`s Major research and Development Projects (2019TSLNY01-04). Work in PC’s lab and DH’s lab were both supported by the National Natural Science Foundation of China (31860557).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZZ and YQ performed the research, prepared a draft of the manuscript. HZ, RS, AR, and LC participated in the research. PC and DH provided technical help. YL designed the experiments, supervised this study. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Yuhong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Qi, Y., Yang, Z. et al. Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.). Mol Biol Rep 49, 11481–11490 (2022). https://doi.org/10.1007/s11033-022-07558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07558-z

Keywords

Navigation