Skip to main content

Advertisement

Log in

Evaluation of serum haptoglobin levels and Hp1-Hp2 polymorphism in the haptoglobin gene in patients with atrial fibrillation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Atrial fibrillation (AF) is an arrhythmia that involves structural and electrophysiological abnormalities. Many of the AF-related clinical conditions are associated with an increase in inflammatory and oxidative factors. Haptoglobin (Hp) is an acute phase protein whose biological role is to promote clearance of free hemoglobin (Hb). In addition, for being considered an inflammatory marker, Hp represents a protective mechanism against the oxidative effects of Hb. The Hp1-Hp2 polymorphism at Hp locus can lead to three phenotypes related to structural and functional differences in the protein. The objective of this study were to evaluate Hp levels and Hp1-Hp2 polymorphism at Hp locus in patients with AF compared to a control group.

Methods and results

This study included 65 patients with AF and 54 individuals without the arrhythmia. Biochemical parameters were determined using Vitros system, plasma levels of Hp were measured in serum samples by using ELISA method and polymorphisms were verified by PCR technique. Plasma Hp levels, as well as allelic and genotypic frequency, were not associated with AF. The levels of Hp also did not differ among the genotypes according to the applied models.

Conclusions

The results suggest that Hp levels and Hp1-Hp2 polymorphism are not associated to AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Čihák R, Haman L, Heinc P (2012) Summary of the 2012 focused update of the ESC guidelines for the management of atrial fibrillation: prepared by the Czech Society of Cardiology. Cor Vasa 6:341–351. https://doi.org/10.1016/j.crvasa.2012.11.008

    Article  Google Scholar 

  2. Hu YF, Chen YJ, Lin YJ et al (2015) Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol 12:230–243. https://doi.org/10.1038/nrcardio.2015.2

    Article  CAS  PubMed  Google Scholar 

  3. January CT, Wann LS, Calkins H et al (2019) 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Rhythm Society. J Am Col Cardiol 74:104–132. https://doi.org/10.1016/j.jacc.2019.01.011

    Article  Google Scholar 

  4. Schnabel RB, Larson MG, Yamamoto JF et al (2009) Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am J Cardiol 104:92–96. https://doi.org/10.1016/j.amjcard.2009.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Moraes ERFL, Cirenza C, Lopes RD et al (2019) Prevalence of atrial fibrillation and stroke risk assessment based on telemedicine screening tools in a primary healthcare setting. Eur J Intern Med 67:36–41. https://doi.org/10.1016/j.ejim.2019.04.024

    Article  PubMed  Google Scholar 

  6. January CT, Wann LS, Alpert JS et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. J Am Col Cardiol 64:2246–2280. https://doi.org/10.1161/cir.0000000000000040

    Article  Google Scholar 

  7. Fenger-Grøn M, Overvad K, Tjønneland A et al (2017) Lean body mass is the predominant anthropometric risk factor for atrial fibrillation. J Am Col Cardiol 69:2488–2497. https://doi.org/10.1016/j.jacc.2017.03.558

    Article  Google Scholar 

  8. Tikkanen E, Gustafsson S, Ingelsson E (2018) Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK biobank study. Circulation 137:2583–2591. https://doi.org/10.1161/circulationaha.117.032432

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crump C, Sundquist J, Winkleby MA et al (2018) Height, weight, and aerobic fitness level in relation to the risk of atrial fibrillation. Am J Epidemiol 187:417–426. https://doi.org/10.1093/aje/kwx255

    Article  PubMed  Google Scholar 

  10. Mozaffarian D, Benjamin EJ, Go AS et al (2016) Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:447–454. https://doi.org/10.1161/cir.0000000000000366

    Article  PubMed  Google Scholar 

  11. Bas HA, Aksoy F, Icli A et al (2017) The association of plasma oxidative status and inflammation with the development of atrial fibrillation in patients presenting with ST elevation myocardial infarction. Scand J Clin Lab Investig 77:77–82. https://doi.org/10.1080/00365513.2016.1244857

    Article  CAS  Google Scholar 

  12. Karam BS, Chavez-Moreno A, Koh W et al (2017) Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 16:1–9. https://doi.org/10.1186/s12933-017-0604-9

    Article  CAS  Google Scholar 

  13. Zheng KH, Tsimikas S, Pawade T et al (2019) Lipoprotein (a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. J Am Coll Cardiol 73:2150–2162. https://doi.org/10.1016/j.jacc.2019.01.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201. https://doi.org/10.1038/35051594

    Article  CAS  PubMed  Google Scholar 

  15. Asleh R, Marsh S, Shilkrut M et al (2003) Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res 92:1193–1200. https://doi.org/10.1161/01.res.0000076889.23082.f1

    Article  CAS  PubMed  Google Scholar 

  16. Nakata K, Saitoh R, Amano J et al (2012) Alteration of intracellular secretory acute phase response proteins expressed in human hepatocyte induced by exposure with interleukin-6. Cytok 59:317–323. https://doi.org/10.1016/j.cyto.2012.04.025

    Article  CAS  Google Scholar 

  17. Schaer DJ, Buehler PW, Alayash AI et al (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins blood. J Am Soc Hematol 121:1276–1284. https://doi.org/10.1182/blood-2012-11-451229

    Article  CAS  Google Scholar 

  18. Costacou T, Levy AP (2012) Haptoglobin genotype and its role in diabetic cardiovascular disease. J Cardiovasc Transl Res 5:423–435. https://doi.org/10.1007/s12265-012-9361-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42:1589–1600. https://doi.org/10.1093/clinchem/42.10.1589

    Article  CAS  PubMed  Google Scholar 

  20. Irwin DC, Baek JH, Hassell K et al (2015) Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration. Free Radic Biol Med 82:50–62. https://doi.org/10.1016/j.freeradbiomed.2015.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalan R, Liew H, Goh LL et al (2016) The haptoglobin 2–2 genotype is associated with inflammation and carotid artery intima-media thickness. Diab Vasc Dis Res 13:373–376. https://doi.org/10.1177/1479164116645247

    Article  CAS  PubMed  Google Scholar 

  22. Gurung RL, Yiamunaa M, Liu S et al (2019) Association of haptoglobin phenotype with incident acute myocardial infarction in Chinese patients with type 2 diabetes. Cardiovasc Diabetol 18:1–9. https://doi.org/10.1186/s12933-019-0867-4

    Article  CAS  Google Scholar 

  23. Yang H, Lundbäck P, Ottosson L et al (2021) Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med. https://doi.org/10.1186/s10020-021-00307-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Asleh R, Levy AP (2005) In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manage 1:19–28. https://doi.org/10.2147/vhrm.1.1.19.58930

    Article  CAS  Google Scholar 

  25. Farbstein D, Levy AP (2010) The genetics of vascular complications in diabetes mellitus. Cardiol Clin 28:477–496. https://doi.org/10.1016/j.ccl.2010.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Shi Y, Guo X et al (2011) Association of haptoglobin 1/2 polymorphism with coronary heart disease in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi Chin J Med Gen 28:60–63. https://doi.org/10.3760/cma.j.issn.1003-9406.2011.01.014

    Article  CAS  Google Scholar 

  27. Filipek A, Czerwińska ME, Kiss AK et al (2015) Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression. Phytomedicine 22:1255–1261. https://doi.org/10.1016/j.phymed.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  28. Ijäs P, Melkas S, Saksi J et al (2017) Haptoglobin Hp2 variant promotes premature cardiovascular death in stroke survivors. Stroke 48:1463–1469. https://doi.org/10.1161/strokeaha.116.015683

    Article  PubMed  Google Scholar 

  29. Wang S, Wang J, Zhang R et al (2019) Association between serum haptoglobin and carotid arterial functions: usefulness of a targeted metabolomics approach. Cardiovasc Diabetol 18:1–13. https://doi.org/10.1186/s12933-019-0808-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cahill LE, Levy AP, Chiuve SE et al (2013) Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J Am Coll Cardiol 61:728–737. https://doi.org/10.1016/j.jacc.2012.09.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pechlaner R, Kiechl S, Willeit P et al (2014) Haptoglobin 2‐2 genotype is not associated With cardiovascular risk in subjects with elevated glycohemoglobin—results from the bruneck study. J Am Heart Assoc. https://doi.org/10.1161/jaha.113.000732

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kazmi N, Koda Y, Ndiaye NC et al (2019) Genetic determinants of circulating haptoglobin concentration. Clin Chim Acta 494:138–142. https://doi.org/10.1016/j.cca.2019.03.1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues KF, Pietrani NT, Carvalho LML et al (2019) Haptoglobin levels are influenced by Hp1–Hp2 polymorphism, obesity, inflammation, and hypertension in type 2 diabetes mellitus. Endocrinol Diabetes Nutr (Engl Ed) 66:99–107. https://doi.org/10.1016/j.endinu.2018.07.008

    Article  Google Scholar 

  34. Carvalho LM, Ferreira CN, De Oliveira DK et al (2017) Haptoglobin levels, but not Hp1-Hp2 polymorphism, are associated with polycystic ovary syndrome. J Assist Reprod Genet 34:1691–1698. https://doi.org/10.1007/s10815-017-1030-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koch W, Latz W, Eichinger M et al (2002) Genotyping of the common haptoglobin Hp 1/2 polymorphism based on PCR. Clin Chem 48:1377–1382. https://doi.org/10.1093/clinchem/48.9.1377

    Article  CAS  PubMed  Google Scholar 

  36. Froguel P, Ndiaye NC, Bonnefond A et al (2012) A genome-wide association study identifies rs2000999 as a strong genetic determinant of circulating haptoglobin levels. PLoS ONE 7:32327. https://doi.org/10.1371/journal.pone.0032327

    Article  CAS  Google Scholar 

  37. Shahabi P, Siest G, Herbeth B et al (2012) Clinical necessity of partitioning of human plasma haptoglobin reference intervals by recently-discovered. Clin Chim Acta 413:1618–1624. https://doi.org/10.1016/j.cca.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  38. Soejima M, Sagata N, Komatsu N et al (2014) Genetic factors associated with serum haptoglobin level in a Japanese population. Clin Chim Acta 433:54–57. https://doi.org/10.1016/j.cca.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  39. Cahill LE, Jensen MK, Chiuve SE et al (2015) The risk of coronary heart disease associated with glycosylated hemoglobin of 6.5% or greater is pronounced in the haptoglobin 2-2 genotype. J Am Coll Cardiol 66:1791–1799. https://doi.org/10.1016/j.jacc.2015.07.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardwick RJ, Ménard A, Sironi M et al (2014) Haptoglobin (HP) and haptoglobin-related protein (HPR) copy number variation, natural selection, and trypanosomiasis. Hum Genet 133:69–83. https://doi.org/10.1007/s00439-013-1352-x

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Wang H, Levine YA et al (2018) Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 1:85375. https://doi.org/10.1172/jci.insight.85375

    Article  Google Scholar 

  42. Carter K, Worwood M (2007) Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. Int J Lab Hematol 29:92–110. https://doi.org/10.1111/j.1751-553x.2007.00898.x

    Article  PubMed  Google Scholar 

  43. Lee CW, Cheng TM, Lin CP et al (2013) Plasma haptoglobin concentrations are elevated in patients with coronary artery disease. PLoS ONE 8:76817–76817. https://doi.org/10.1371/journal.pone.0076817

    Article  CAS  Google Scholar 

  44. Moussa A, Rejeb J, Omezzine A et al (2014) Association between haptoglobin 2–2 genotype and coronary artery disease and its severity in a tunisian population. Biochem Genet 52:269–282. https://doi.org/10.1007/s10528-014-9646-9

    Article  CAS  PubMed  Google Scholar 

  45. Melamed-Frank M, Lache O, Enav BI et al (2001) Structure-function analysis of the antioxidant properties of haptoglobin. Blood J Am Soc Hematol 98:3693–3698. https://doi.org/10.1182/blood.V98.13.3693

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the sample donors for their participation in the research and all the physicians and staff at Life center and Semper Hospitals for contributing to this study.

Funding

This work was supported by the National Council for Scientific Development—CNPq, by the Research Support Foundation of the State of Minas Gerais—FAPEMIG and by the Coordination for the Improvement of Higher Education Personnel—CAPES.

Author information

Authors and Affiliations

Authors

Contributions

The investigation was carried out by the authors LBXC, GLM and RCFD. Validation was performed by LBXC, RFD and PLR Resources were offered by ELF, FRS, HJR and KBG. Conceptualization was performed by LBXC, MGC, KBG and CNF. Original writing was done by LBXC. Formal analysis and supervision were carried out by KBG. Review, editing and project management were performed by CNF.

Corresponding author

Correspondence to Cláudia Natália Ferreira.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L.B.X., Martins, G.L., Duarte, R.C.F. et al. Evaluation of serum haptoglobin levels and Hp1-Hp2 polymorphism in the haptoglobin gene in patients with atrial fibrillation. Mol Biol Rep 49, 7359–7365 (2022). https://doi.org/10.1007/s11033-022-07528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07528-5

Keywords

Navigation