Skip to main content

Advertisement

Log in

Astrocytes promote the proliferation of oligodendrocyte precursor cells through connexin 47-mediated LAMB2 secretion in exosomes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Oligodendrocyte precursor cells (OPCs) can proliferate and differentiate into oligodendrocytes, the only myelin-forming cells in the central nervous system. Proliferating OPCs promotes remyelination in neurodegenerative diseases. Astrocytes (ASTs) are the most widespread cells in the brain and play a beneficial role in the proliferation of OPCs. Connexin 47 (Cx47) is the main component of AST-OPC gap junctions to regulate OPC proliferation. Nonetheless, the specific mechanism remains unclear.

Methods and results

This study investigates the proliferation mechanism of OPCs connected to ASTs via Cx47. Cx47 siRNA significantly inhibited OPCs from entering the proliferation cycle. Transcriptome sequencing of OPCs and gene ontology enrichment analysis revealed that ASTs enhanced the exosome secretion by OPCs via Cx47. Transmission electron microscopy, Western blot, and nanoparticle tracking analysis indicated that the OPC proliferation was related to extracellular exosomes. Cx47 siRNA decreased the OPC proliferation and exosome secretion in AST-OPC cocultures. Exogenous exosome supplementation alleviated the inhibitory effect of Cx47 siRNA and significantly improved OPC proliferation. Mass spectrometry revealed that LAMB2 was abundant in exosomes. The administration of exogenous LAMB2 induced DNA replication in the S phase in OPCs by activating cyclin D1.

Conclusions

Collectively, ASTs induce the secretion of exosomes that carry LAMB2 by OPCs via Cx47 to upregulate cyclin D1 thereby accelerating OPC proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data of this study are available upon reasonable request.

References

  1. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68:326–337. https://doi.org/10.1212/01.wnl.0000252807.38124.a3

    Article  CAS  PubMed  Google Scholar 

  2. Gallo V, Deneen B (2014) Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83:283–308. https://doi.org/10.1016/j.neuron.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zawadzka M, Franklin RJ (2007) Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Curr Opin Neurol 20:294–298. https://doi.org/10.1097/WCO.0b013e32813aee7f

    Article  PubMed  Google Scholar 

  4. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778. https://doi.org/10.1126/science.1190928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoffels JM, Hoekstra D, Franklin RJ, Baron W, Zhao C (2015) The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demye-lination. Glia 63:242–256. https://doi.org/10.1002/glia.22748

    Article  PubMed  Google Scholar 

  6. Nutma E, van Gent D, Amor S, Peferoen LAN (2020) Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells. https://doi.org/10.3390/cells9030600

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Zhang J, Navrazhina K, Argaw AT, Zameer A, Gurfein BT, Brosnan CF, John GR (2010) TGFbeta1 induces Jagged1 expression in astrocytes via ALK5 and Smad3 and regulates the balance between oligodendrocyte progenitor proliferation and differentiation. Glia 58:964–974. https://doi.org/10.1002/glia.20978

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kleopa KA, Sargiannidou I (2015) Connexins, gap junctions and peripheral neuropathy. Neurosci Lett 596:27–32. https://doi.org/10.1016/j.neulet.2014.10.033

    Article  CAS  PubMed  Google Scholar 

  9. Nualart-Marti A, Solsona C, Fields RD (2013) Gap junction communication in myelinating glia. Biochim Biophys Acta 1828:69–78. https://doi.org/10.1016/j.bbamem.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  10. Masaki K, Suzuki SO, Matsushita T, Yonekawa T, Matsuoka T, Isobe N, Motomura K, Wu XM, Tabira T, Iwaki T, Kira J (2012) Extensive loss of connexins in Balo’s disease: evidence for an auto-antibody-independent astrocytopathy via impaired astrocyte-oligodendrocyte/myelin interaction. Acta Neuropathol 123:887–900. https://doi.org/10.1007/s00401-012-0972-x

    Article  PubMed  Google Scholar 

  11. Mozafari S, Deboux C, Laterza C, Ehrlich M, Kuhlmann T, Martino G, Baron-Van Evercooren A (2021) Beneficial contribution of induced pluripotent stem cell-progeny to Connexin 47 dynamics during demyelination-remyelination. Glia 69:1094–1109. https://doi.org/10.1002/glia.23950

    Article  CAS  PubMed  Google Scholar 

  12. Fasciani I, Pluta P, Gonzalez-Nieto D, Martinez-Montero P, Molano J, Paino CL, Millet O, Barrio LC (2018) Directional coupling of oligodendrocyte connexin-47 and astrocyte connexin-43 gap junctions. Glia 66:2340–2352. https://doi.org/10.1002/glia.23471

    Article  PubMed  Google Scholar 

  13. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559. https://doi.org/10.1523/JNEUROSCI.23-11-04549.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. May D, Tress O, Seifert G, Willecke K (2013) Connexin47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin43 protein in astrocytes. J Neurosci 33:7985–7996. https://doi.org/10.1523/JNEUROSCI.5874-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li X, Penes M, Odermatt B, Willecke K, Nagy JI (2008) Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions. Eur J Neurosci 28:1503–1517. https://doi.org/10.1016/j.neuroscience.2004.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Xu D, Wang S, Chen Y, Li Z, Gao X, Jiang L, Tang Y, Peng Y (2017) Astrocytes induce proliferation of oligodendrocyte progenitor cells via connexin 47-mediated activation of the ERK/Id4 pathway. Cell Cycle 16:714–722. https://doi.org/10.1080/15384101.2017.1295183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hill AF (2019) Extracellular vesicles and neurodegenerative diseases. J Neurosci 39:9269–9273. https://doi.org/10.1523/JNEUROSCI.0147-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902. https://doi.org/10.1083/jcb.85.3.890

    Article  CAS  PubMed  Google Scholar 

  19. Niu J, Wang L, Liu S, Li C, Kong J, Shen HY, Xiao L (2012) An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells. J Neurosci Methods 209:241–249. https://doi.org/10.1016/j.jneumeth.2012.05.032

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2:1044–1051. https://doi.org/10.1038/nprot.2007.149

    Article  CAS  PubMed  Google Scholar 

  21. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22. https://doi.org/10.1002/0471143030.cb0322s30

    Article  PubMed  Google Scholar 

  22. Mathieu PA, Almeira Gubiani MF, Rodriguez D, Gomez Pinto LI, Calcagno ML, Adamo AM (2019) Demyelination-remyelination in the central nervous system: ligand-dependent participation of the notch signaling pathway. Toxicol Sci. https://doi.org/10.1093/toxsci/kfz130

    Article  PubMed  Google Scholar 

  23. Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–881. https://doi.org/10.1002/glia.21156

    Article  PubMed  Google Scholar 

  24. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47. https://doi.org/10.1016/s0166-2236(00)01691-x

    Article  CAS  PubMed  Google Scholar 

  25. Traiffort E, Kassoussi A, Zahaf A, Laouarem Y (2020) Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Front Cell Neurosci 14:79. https://doi.org/10.3389/fncel.2020.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arai K, Lo EH (2010) Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. J Neurosci Res 88:758–763. https://doi.org/10.1002/jnr.22256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garwood J, Garcion E, Dobbertin A, Heck N, Calco V, ffrench-Constant C, Faissner A (2004) The extracellular matrix glycoprotein Tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. Eur J Neurosci 20:2524–2540. https://doi.org/10.1111/j.1460-9568.2004.03727.x

    Article  PubMed  Google Scholar 

  28. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357. https://doi.org/10.1016/s0092-8674(00)81279-9

    Article  CAS  PubMed  Google Scholar 

  29. Garcia MA, Nelson WJ, Chavez N (2018) Cell-cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a029181

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shamloo A, Sarmadi M (2016) Investigation of the adhesive characteristics of polymer-protein systems through molecular dynamics simulation and their relation to cell adhesion and proliferation. Integr Biol (Camb) 8:1276–1295. https://doi.org/10.1039/c6ib00159a

    Article  CAS  Google Scholar 

  31. Totland MZ, Rasmussen NL, Knudsen LM, Leithe E (2020) Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 77:573–591. https://doi.org/10.1007/s00018-019-03285-0

    Article  CAS  PubMed  Google Scholar 

  32. Basu R, Das Sarma J (2018) Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination. J Biosci 43:1055–1068. https://doi.org/10.1007/s12038-018-9811-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte: astrocyte and oligodendrocyte: oligodendrocyte gap junction coupling. Neurobiol Dis 42:506–513. https://doi.org/10.1016/j.nbd.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957. https://doi.org/10.1523/JNEUROSCI.3395-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li H, Tang M, Liang H, Li Y, Wang J, Song Y, Zheng Y, Xi J, Zhang J, Hescheler J, Zhu M (2013) Coculture of embryonic ventricular myocytes and mouse embryonic stem cell enhance intercellular signaling by upregulation of connexin43. Cell Physiol Biochem 32:53–63. https://doi.org/10.1159/000350124

    Article  CAS  PubMed  Google Scholar 

  36. Yao J, Morioka T, Oite T (2000) PDGF regulates gap junction communication and connexin43 phosphorylation by PI 3-kinase in mesangial cells. Kidney Int 57:1915–1926. https://doi.org/10.1046/j.1523-1755.2000.00041.x

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Liu Y, Yi D, Wei L, Li Y, Zhang L (2014) Tanshinone IIA promotes pulmonary artery smooth muscle cell apoptosis in vitro by inhibiting the JAK2/STAT3 signaling pathway. Cell Physiol Biochem 33:1130–1138. https://doi.org/10.1159/000358682

    Article  CAS  PubMed  Google Scholar 

  38. Xu D, Liu Z, Wang S, Peng Y, Sun X (2017) Astrocytes regulate the expression of Sp1R3 on oligodendrocyte progenitor cells through Cx47 and promote their proliferation. Biochem Biophys Res Commun 490:670–675. https://doi.org/10.1016/j.bbrc.2017.06.099

    Article  CAS  PubMed  Google Scholar 

  39. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887. https://doi.org/10.1093/intimm/dxh267

    Article  CAS  PubMed  Google Scholar 

  40. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978. https://doi.org/10.4049/jimmunol.179.3.1969

    Article  CAS  PubMed  Google Scholar 

  41. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  42. Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, Yang X, Fang F, Xia Q, Zhang Z, Shang M, Jiang S (2019) Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer 18:18. https://doi.org/10.1186/s12943-019-0948-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aumailley M (2013) The laminin family. Cell Adhes Migr 7:48–55. https://doi.org/10.4161/cam.22826

    Article  Google Scholar 

  44. Yao Y (2017) Laminin: loss-of-function studies. Cell Mol Life Sci 74(6):1095–1115. https://doi.org/10.1007/s00018-016-2381-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of China (NSFC 82171522) and the Chongqing Science and Technology Commission (No. cstc2019jcyj-msxmX0193).

Author information

Authors and Affiliations

Authors

Contributions

NC made a key contribution to the experimental design, data analysis, and manuscript draft. YX and WZ participated in the experimental process. XW, ZS, LZ, and HW provided intellectual content. YT and YP guided the whole study and revised the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Yong Tang or Yan Peng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Experimental animals in this study were provided by the Experimental Animal Center of Chongqing Medical University (Animal Use Approval No. SYXK YU 2018-0003). All animal experiments were approved by the Committee for Ethics in Animal Experimentation of Chongqing Medical University.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 8539 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, N., Xiong, Y., Zhang, W. et al. Astrocytes promote the proliferation of oligodendrocyte precursor cells through connexin 47-mediated LAMB2 secretion in exosomes. Mol Biol Rep 49, 7263–7273 (2022). https://doi.org/10.1007/s11033-022-07508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07508-9

Keywords

Navigation