Skip to main content
Log in

Somatic embryogenesis and β-glucuronidase transformation in chickpea (Cicer arietinum cv. Bivanich)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chickpea (Cicer arietinum L.) is an important kernel legume in the world. To optimize the plant tissue culture some experiments such as direct regeneration, proliferation, rooting shoots and somatic embryogenesis were done.

Methods and results

In experiments were used direct regeneration and proliferation, various levels of plant growth regulators NAA (0 and 1.0 mg/l), BAP (0, 1, 3 and 5 mg/l) and three explants’ types (epicotyl, cotyledon and embryonic axis). The results of both experiments showed that embryonic axis explant was better than other explants. The highest percentage was obtained in MS media containing 1 mg/l BAP and also 3 mg/l BAP and 0.1 mg/l NAA with an average of 72%. The highest average number of branches (4.66) was found in the proliferation of embryonic axis in MS medium containing 3 mg/l BAP. The highest rooting shoot (90%) was found in 1/2MS in B5 medium vitamins with 0.2 mg/l of IBA and 0.5 mg/l NAA. Somatic embryogenesis experiments were compared on the concentration gradient of 2,4-D in fine embryonic axis explants. The results displayed that the concentration gradient of 10 mg/l 2,4-D to 5 mg/l of 2,4-D and then to zero concentration showed the highest number of embryos.

Conclusion

The best environment for regeneration embryos was MS medium with 2.5 mg/l of 2,4-D concentration gradient to zero. In this study, the PCR reaction showed the presence of the β-glucuronidase (gus) marker gene in regenerated cotyledons for 20 min in all three strains studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BAP:

Benzylaminopurine

BA:

Benzyl adenine

NAA:

Naphthaleneacetic acid

MS medium:

Murashige and Skoog medium

PGRs:

Plant growth retardants

IBA:

Indole-3-butyric acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

LB medium:

Lysogeny Broth medium

DDW:

Deuterium-depleted water

PCR:

Polymerase chain reaction

ppm:

Part per million

CTAB:

Cetyltrimethylammonium bromide

References

  1. Tuna GS, Yucel G, Asciogul TK, Ates D, Esiyok D, Tanyolac MB, Tuna M (2020) Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions. Turk J Agric For 44:612–630. https://doi.org/10.3906/tar-1910-33

    Article  CAS  Google Scholar 

  2. Ozturk HI, Dursun A, Hosseinpour A, Haliloglu K (2020) Genetic diversity of pinto and fresh bean (Phaseolus vulgaris L.) germplasm collected from Erzincan province of Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk J Agric For 44:417–427. https://doi.org/10.3906/tar-2002-9

    Article  CAS  Google Scholar 

  3. Singh S, Singh I, Kapoor K, Gaur PM, Chaturvedi SK, Singh NP, Sandhu JS (2014) Chickpea. In: Singh M et al (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi

    Chapter  Google Scholar 

  4. Gatti I, Guindón F, Bermejo C, Espósito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Organ Cult 127:543–559

    Article  CAS  Google Scholar 

  5. Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Organ Cult 127:585–590

    Article  CAS  Google Scholar 

  6. Das A, Parida SK (2014) Advances in biotechnological applications in three important food legumes. Plant Biotechnol Rep 8:83–99

    Article  Google Scholar 

  7. Leonetti P, Accotto GP, Hanafy MS, Pantaleo V (2018) Viruses and phytoparasitic nematodes of cicer arietinum L.: biotechnological approaches in interaction studies and for sustainable control. Front Plant Sci 9:319

    Article  PubMed  PubMed Central  Google Scholar 

  8. Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric transgenic Chickpea. Front Plant Sci 10:524

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yadava R, Mehrotra M, Singh AK, Niranjan A, Singh R, Sanyal I, Lehri A, Pande V, Amla DV (2017) Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L) by the inhibition of polyphenolics released during wounding of cotyledonary node explants. Protoplasma 254(1):253–269

    Article  Google Scholar 

  10. Kieber JJ, Schaller GC (2014) Cytokinins. Am Soc Plant Biol 12:e0168

    Google Scholar 

  11. Witjaksono T (1997) Development of protocols for Avocado tissue culture: somatic embryogenesis, protoplast culture, shoots proliferation and protoplast fusion. University of Florida, USA, Ph.D.Thesis

    Google Scholar 

  12. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  13. Ibaraki Y, Kurata K (2001) Automation of somatic embryo production. Plant Cell Tissue Organ Cult 65:179–199

    Article  CAS  Google Scholar 

  14. Wang X (1997) Somatic embryo induction and plant regeneration in American Ginseng (Panax quinquefolium L.). M.Sc. Thesis, University of Guelph, Canada

  15. Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L). Plant Cell Tissue Organ Cul 113(3):513

    Article  CAS  Google Scholar 

  16. Roberson D, Cristiane L, Francine L, Henrique K, Marguerite Q (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agri 62:406–412

    Article  Google Scholar 

  17. Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  18. Polisetty R, Paul V, Deveshvar JJ, Khetarpal S (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Rep 16:565–571

    Article  CAS  PubMed  Google Scholar 

  19. Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303

    Article  CAS  PubMed  Google Scholar 

  20. Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, Dekathen A, Pikardt T, Schieder O (2000) Agrobacterium mediated transformation of chickpea (Cicerarietinum L.) embryo axes. Plant Cell Rep 19:235–240

    Article  CAS  PubMed  Google Scholar 

  21. Shalini S, Batra P, Sindhu A, Chowdhury VK (2001) Multiple shoot induction and complete plant regeneration of chickpea (Cicerarietinum L.). Crop Res 21:308–311

    Google Scholar 

  22. Yousefiara M, Bagheri A, Moshtaghi N (2008) Optimizing regeneration condition in chickpea (Cicer arietinum L.). Pak J Biol Sci 11(7):1009–1014

    Article  CAS  PubMed  Google Scholar 

  23. Sharma K, Jayanand B, Sudarsanam G (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explant derived from in vitro germinated seedings. In Vitro Cell Dev Biol Plant 39:171–179

    Article  Google Scholar 

  24. Yusnita Y, Jamaludin J, Agustiansyah A, Hapsoro D (2018) A combination of IBA and NAA resulted in better rooting and shoot sprouting than single auxin on Malay Apple [Syzygium malaccense (L.) Merr. & Perry] Stem Cuttings. Agrivita J Agri Sci 40(1):80–90

    Google Scholar 

  25. Hartmann HT, Kester DE, Davies FT (1990) Plant Propagation: Principles and Practices. 5th ed., pp. 1–100. Prentice Hall International Editions, Englewood Cliffs, New Jersey, USA

  26. Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 7:33–49

    Article  CAS  PubMed  Google Scholar 

  27. Nisha MC, Rajeshkumar S, Selvaraj T, Subramanian M (2009) A valued Indian medicinal plant Begonia malabarica Lam. Successful plant regeneration through various explants and field performance. Maejo Int J Sci Technol 3(02):261–268

    CAS  Google Scholar 

  28. Yuying L, Penghui D, Xianping Z (2010) Study on tissue culture of rieger begonia. Shaanxi Forestry Sci Technol 54:21–31

    Google Scholar 

  29. Quiroz-Figueroa FRR, Rojas Herrera RM, Galaz Avalos VM, Vargas L (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  30. Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147(1–2):1–24

    Article  Google Scholar 

  31. Akbulut M, Yücel M, Öktem HA (2008) Analysis and optimization of DNA delivery into chickpea (Cicer arietinum L) seedlings by Agrobacterium tumefacience. Afr J Biotechnol 7(8):1

    Google Scholar 

  32. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Nextgeneration sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  33. Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. In: Luttge U, Beyschag W, Francis D, Cushman J (eds) Progress in botany 74. Springer-Verlag, Berlin, Heidelberg, pp 37–100

    Chapter  Google Scholar 

  34. Batra P, Yadav NR, Sindhu A, Yadav RC, Chowdhury VK, Chowdhury JB (2002) Efcient protocol for in vitro direct plant regeneration in chickpea Cicer arietinum L. Indian J Expl Biol 40:600–602

    CAS  Google Scholar 

  35. Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.) using mature embryogenic axis and cotyledonary nodes. Indian J Biotechnol 2:524–532

    CAS  Google Scholar 

  36. Bhattacharjee B, Mohan M, Nair S (2010) Transformation of chickpea: effect of genotype, explant, Agrobacterium-strain and composition of culture medium. Biol Plant 54(1):21–32

    Article  Google Scholar 

  37. Yang ZN, Ingelbrecht IL, louzada E, Skaria M, Mirkov TE, (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211

    Article  CAS  PubMed  Google Scholar 

  38. Fathi A, Barak M, Damandan M, Amani F, Moradpour R, Khalilova I, Valizadeh M (2021) Neonatal Screening for Glucose-6-phosphate dehydrogenase deficiency in Ardabil Province, Iran, 2018–2019. Cell Mol Biomed Rep 1(1):1–6

    Article  Google Scholar 

  39. Tourang M, Fang L, Zhong Y, Suthar R (2021) Association between human endogenous retrovirus K gene expression and breast cancer. Cell Mol Biomed Rep 1(1):7–13

    Article  Google Scholar 

  40. Bilal I, Xie S, Elburki M, Aziziaram Z, Ahmed S, Jalal BS (2021) Cytotoxic effect of diferuloylmethane, a derivative of turmeric on different human glioblastoma cell lines. Cell Mol Biomed Rep 1(1):14–22

    Article  Google Scholar 

  41. Aziziaram Z, Bilal I, Zhong Y, Mahmod A, Roshandel M (2021) Protective effects of curcumin against naproxen-induced mitochondrial dysfunction in rat kidney tissue. Cell Mol Biomed Rep 1(1):23–32

    Article  Google Scholar 

  42. Ercisli MF, Lechun G, Azeez S, Hamasalih R, Song S, Aziziaram Z (2021) Relevance of genetic polymorphisms of the human cytochrome P450 3A4 in rivaroxaban-treated patients. Cell Mol Biomed Rep 1(1):33–41

    Article  Google Scholar 

  43. Azeez S, Jafar S, Aziziaram Z, Fang L, Mawlood A, Ercisli M (2021) Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 1(1):42–51

    Article  Google Scholar 

  44. Van Eenennaam AL, De Figueiredo SF, Trott JF, Zilberman D (2021) Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu Rev Anim Biosci 9:453–478

    Article  PubMed  Google Scholar 

  45. Akin M, Eyduran E, Niedz RP, Reed BM (2017) Developing hazelnut tissue culture medium free of ion confounding. Plant Cell Tissue Organ Cult 130(3):483–494

    Article  CAS  Google Scholar 

  46. Akin M, Eyduran SP, Eyduran E, Reed BM (2020) Analysis of macro nutrient related growth responses using multivariate adaptive regression splines. Plant Cell Tissue Organ Cult 140(3):661–670

    Article  Google Scholar 

  47. Kovalchuk IY, Mukhitdinova Z, Turdiyev T, Madiyeva G, Akin M, Eyduran E, Reed BM (2017) Modeling some mineral nutrient requirements for micropropagated wild apricot shoot cultures. Plant Cell Tissue Organ Cult 129(2):325–335

    Article  CAS  Google Scholar 

  48. Kovalchuk IY, Mukhitdinova Z, Turdiyev T, Madiyeva G, Akin M, Eyduran E, Reed BM (2018) Nitrogen ions and nitrogen ion proportions impact the growth of apricot (Prunus armeniaca) shoot cultures. Plant Cell Tissue Organ Cult 133(2):263–273

    Article  CAS  Google Scholar 

  49. Niedz RP, Evens TJ (2008) The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck). BMC Plant Biol 8(1):1–1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all those who work in the Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources for their help. Financial support for this work has been provided by Razi University Grants No. 56747.

Funding

No external funding was obtained for this project.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this research. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Alireza Zebarjadi or Sezai Ercisli.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

None.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, M.R., Zebarjadi, A., Kahrizi, D. et al. Somatic embryogenesis and β-glucuronidase transformation in chickpea (Cicer arietinum cv. Bivanich). Mol Biol Rep 49, 11219–11227 (2022). https://doi.org/10.1007/s11033-022-07450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07450-w

Keywords

Navigation