Skip to main content

Advertisement

Log in

NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

NF-κB (nuclear transcription factor-kappa B) plays a well-known function in the regulation of immune responses and inflammation, but growing evidences support a major role of it in atherosclerosis. Currently, the regulatory mechanism of NF-κB pathway involved in atherosclerosis remains unclear.

Methods

To investigate the role of ox-LDL (oxidized low-density lipoprotein) in NF-κB regulation, the protein expression of phosphorylated NF-κB, a marker of NF-κB pathway activation was measured. The pyroptosis of macrophage was evaluated by western blot and fluorescence microscope. Cholesterol efflux capacity was determined by fluorescence assay and oil red O staining. The inhibitor of activation of NF-κB signal was used to assess the effect of NF-κB signal on macrophage pyroptosis and cholesterol efflux in macrophage. Small interfering RNA of ABCA1 (cholesterol transporters ATP binding boxes A1) was used to assess the effect of ABCA1 on macrophage pyroptosis.

Results

In this study, we reported THP-1 derived macrophage can be stimulated to increase pyroptosis by ox-LDL in a concentration-dependent manner. Macrophage pyroptosis was correlated with enhanced activation of NF-κB signal. After using inhibitor of NF-κB phosphorylation to attenuate activation of NF-κB signal, we identified and confirmed the decrease of macrophage pyroptosis and the occurrence of ox-LDL-induced cholesterol efflux disorder. Furthermore, we found that the downregulation of ABCA1 led to increased cell inflammation death. But pyroptosis was blocked, may led to cholesterol efflux dysfunction.

Conclusion

Taken together, the present results indicate that the mechanism of NF-κB involved in the development of atherosclerosis depends on mediating cell pyroptosis and cholesterol efflux and provide significant light on macrophage NF-κB signal in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

My manuscript has no associated data.

Code availability

None.

References

  1. Xing SS, Yang J, Li WJ, Li J, Chen L, Yang YT, Lei X, Li J, Wang K, Liu X (2020) Salidroside decreases atherosclerosis plaque formation via inhibiting endothelial cell pyroptosis. Inflammation 43:433–440. https://doi.org/10.1007/s10753-019-01106-x

    Article  PubMed  Google Scholar 

  2. Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding rna meg3/mir-223/nlrp3 axis. J Pineal Res. https://doi.org/10.1111/jpi.12449

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xu YJ, Zheng L, Hu YW, Wang Q (2018) Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 476:28–37. https://doi.org/10.1016/j.cca.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin d causes pyroptosis by forming membrane pores. Nature 535:153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C, Qiu J, Rong X, Shi Z, Xiao J, Shi Y, Chu M (2019) Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol 67:311–318. https://doi.org/10.1016/j.intimp.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  6. He B, Nie Q, Wang F, Han Y, Yang B, Sun M, Fan X, Ye Z, Liu P (2021) Wen J Role of pyroptosis in atherosclerosis and its therapeutic implications. J Cell Physiol. https://doi.org/10.1002/jcp.30366

    Article  PubMed  Google Scholar 

  7. Xu S, Chen H, Ni H, Dai Q (2021) Targeting hdac6 attenuates nicotine-induced macrophage pyroptosis via nf-kappab/nlrp3 pathway. Atherosclerosis 317:1–9. https://doi.org/10.1016/j.atherosclerosis.2020.11.021

    Article  CAS  PubMed  Google Scholar 

  8. Zeng Z, Zheng Q, Chen J, Tan X, Li Q, Ding L, Zhang R, Lin X (2020) Fgf21 mitigates atherosclerosis via inhibition of nlrp3 inflammasome-mediated vascular endothelial cells pyroptosis. Exp Cell Res 393:112108. https://doi.org/10.1016/j.yexcr.2020.112108.

    Article  CAS  PubMed  Google Scholar 

  9. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, Group CT (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S, Sun C (2017) Melatonin alleviates inflammasome-induced pyroptosis through inhibiting nf-kappab/gsdmd signal in mice adipose tissue. J Pineal Res. https://doi.org/10.1111/jpi.12414

    Article  PubMed  Google Scholar 

  11. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L (2019) Nek7 interacts with nlrp3 to modulate the pyroptosis in inflammatory bowel disease via nf-kappab signaling. Cell Death Dis 10:906. https://doi.org/10.1038/s41419-019-2157-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pang JL, Wang JW, Hu PY, Jiang JS, Yu C (2018) Hotair alleviates ox-ldl-induced inflammatory response in raw264.7 cells via inhibiting nf-kappab pathway. Eur Rev Med Pharmacol Sci 22:6991–6998. https://doi.org/10.26355/eurrev_201810_16170

    Article  PubMed  Google Scholar 

  13. Yu XH, Zhang DW, Zheng XL, Tang CK (2019) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91. https://doi.org/10.1016/j.plipres.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Tall AR, Westerterp M (2019) Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res 60:721–727. https://doi.org/10.1194/jlr.S091280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van Gemert S, Wang N, Welch CL, Reilly MP, Stroes ES, Moore KJ, Tall AR (2018) Cholesterol efflux pathways suppress inflammasome activation, netosis, and atherogenesis. Circulation 138:898–912. https://doi.org/10.1161/CIRCULATIONAHA.117.032636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grebe A, Hoss F, Latz E (2018) Nlrp3 inflammasome and the il-1 pathway in atherosclerosis. Circ Res 122:1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362

    Article  CAS  PubMed  Google Scholar 

  17. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) Nlrp3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 233:2116–2132. https://doi.org/10.1002/jcp.25930

    Article  CAS  PubMed  Google Scholar 

  18. 李秀珍, 黄孝天, 符民桂 细胞焦亡在动脉粥样硬化中的作用. 中国动脉硬化杂志 (2018). 26:1–6. https://doi.org/10.37155/2717-5693-0102-2

  19. Zhuang T, Liu J, Chen X, Zhang L, Pi J, Sun H, Li L, Bauer R, Wang H, Yu Z, Zhang Q, Tomlinson B, Chan P, Zheng X, Morrisey E, Liu Z, Reilly M, Zhang Y (2019) Endothelial foxp1 suppresses atherosclerosis via modulation of nlrp3 inflammasome activation. Circ Res 125:590–605. https://doi.org/10.1161/CIRCRESAHA.118.314402

    Article  CAS  PubMed  Google Scholar 

  20. Meng Z, Hernandez R, Liu J, Gwag T, Lu W, Hsiai TK, Kaul M, Zhou T (2021) Zhou C Hiv protein tat induces macrophage dysfunction and atherosclerosis development in low-density lipoprotein receptor-deficient mice. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-021-07141-x

    Article  PubMed  Google Scholar 

  21. Mitchell JP, Carmody RJ (2018) Nf-kappab and the transcriptional control of inflammation. Int Rev Cell Mol Biol 335:41–84. https://doi.org/10.1016/bs.ircmb.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Shen S, Ding S, Wang L (2018) Toll-like receptor 2 downregulates the cholesterol efflux by activating the nuclear factor-kappab pathway in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis. Exp Ther Med 15:198–204. https://doi.org/10.3892/etm.2017.5404

    Article  CAS  PubMed  Google Scholar 

  23. Costa Franco MMS, Marim FM, Alves-Silva J, Cerqueira D, Rungue M, Tavares IP, Oliveira SC (2019) Aim2 senses brucella abortus DNA in dendritic cells to induce il-1beta secretion, pyroptosis and resistance to bacterial infection in mice. Microb Infect 21:85–93. https://doi.org/10.1016/j.micinf.2018.09.001

    Article  CAS  Google Scholar 

  24. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F, Liu Z (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:421–426. https://doi.org/10.1038/s41586-020-2079-1

    Article  CAS  PubMed  Google Scholar 

  25. Jorgensen I, Rayamajhi M, Miao EA (2017) Programmed cell death as a defence against infection. Nat Rev Immunol 17:151–164. https://doi.org/10.1038/nri.2016.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Niu X, Xu H, Li Q, Meng L, He M, Zhang J, Zhang Z, Zhang Z (2020) Vx-765 attenuates atherosclerosis in apoe deficient mice by modulating vsmcs pyroptosis. Exp Cell Res 389:111847. https://doi.org/10.1016/j.yexcr.2020.111847

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (81672084).

Author information

Authors and Affiliations

Authors

Contributions

JL and XG: conception, design and analysis of data, performed the data analyses, and wrote the manuscript. JL, JL and YY: contributed to the conception of the study. JL and YL: contributed signifcantly to analysis and manuscript preparation.

Corresponding author

Correspondence to Xiuru Guan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, J., Yu, Y. et al. NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages. Mol Biol Rep 49, 6161–6171 (2022). https://doi.org/10.1007/s11033-022-07408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07408-y

Keywords

Navigation