Skip to main content

Advertisement

Log in

Mitochondrial oxidative phosphorylation became functional under aglycemic hypoxia conditions in A549 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Normal cells produce energy (ATP) through mitochondrial oxidative phosphorylation in the presence of oxygen. However, many of the cancer cells produce energy with accelerated glycolysis and perform lactic acid production even under normoxic conditions called “The Warburg Effect”. In this study, human lung carcinoma cells (A549) were incubated in either a normoxic or hypoxic environment containing 5 mM glucose (Glc 5), 25 mM glucose (Glc 25), or 10 mM galactose (OXPHOS/aglycemic), and then the bioenergetic pathway was anaylsed.

Methods and results

HIF-1α stabilization of A549 cells with different metabolic conditions in normoxia and hypoxia (1% O2) was determined using the western blot method. After that, l-lactic acid analysis, p-PDH/PDH expression ratio, ATP analysis, and citrate synthase activity experiments were also performed. It was determined that HIF-1α stabilization reached the maximum level at the 4 h. It has been found that glycolytic cells produce approximately five times more lactate than OXPHOS cells under both normoxia and hypoxia conditions and also have a higher p-PDH/PDH ratio. It has been determined that citrate synthase activity in hypoxia of all metabolic conditions is lower than normoxia. It has been determined that Glc 5 and Glc 25 cells have more ATP production under normoxia than Glc 5 and Glc 25 cells in hypoxia. OXPHOS cells have showed more ATP production in hypoxia.

Conclusion

It has been determined that oxidative phosphorylation became functional in a hypoxic aglycemic environment despite the metabolic programming regulated by HIF-1α. This data is important in determining targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support this study are available from the corresponding author upon reasonable request.

References

  1. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Investig 118(12):3835–3837

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Warburg O, Posener K, Negelein E (1924) Über den stoffwechsel der carcinomzelle. Naturwissenschaften 12(50):1131–1137

    Article  CAS  Google Scholar 

  3. Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9(1):148–163

    Article  CAS  Google Scholar 

  4. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  CAS  PubMed  Google Scholar 

  5. Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Investig 106(7):809–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahadori B, Uitz E, Mayer A, Harauer J, Dam K, Truschnig-Wilders M et al (2010) Polymorphisms of the hypoxia-inducible factor 1 gene and peripheral artery disease. Vascular Med 15(5):371–374

    Article  Google Scholar 

  7. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA et al (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α. Cancer Res 60(17):4873–4880

    CAS  PubMed  Google Scholar 

  8. Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Bürgel T (2002) Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 512(1–3):157–162

    Article  CAS  PubMed  Google Scholar 

  9. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C et al (2008) Hypoxia-inducible factor‐1α contributes to hypoxia‐induced chemoresistance in gastric cancer. Cancer Sci 99(1):121–128

    CAS  PubMed  Google Scholar 

  12. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  13. Liao SH, Zhao XY, Han YH, Zhang J, Wang LS, Xia L et al (2009) Proteomics-based identification of two novel direct targets of hypoxia‐inducible factor‐1 and their potential roles in migration/invasion of cancer cells. Proteomics 9(15):3901–3912

    Article  CAS  PubMed  Google Scholar 

  14. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Science’s STKE 306:re-12

    Google Scholar 

  15. Hitosugi T, Fan J, Chung T-W, Lythgoe K, Wang X, Xie J et al (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44(6):864–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krall AS, Christofk HR (2013) A metabolic metamorphosis. Nature 496(7443):38–40

    Article  CAS  PubMed  Google Scholar 

  17. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabol 3(3):177–185

    Article  Google Scholar 

  18. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(10):619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jin L, Alesi G, Kang S (2016) Glutaminolysis as a target for cancer therapy. Oncogene 35(28):3619–3625

    Article  CAS  PubMed  Google Scholar 

  21. Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43(7):950–968

    Article  PubMed  Google Scholar 

  22. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669

    Article  CAS  PubMed  Google Scholar 

  23. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64(3):985–993

    Article  CAS  PubMed  Google Scholar 

  24. Coller HA (2014) Is cancer a metabolic disease? Am J Pathol 184(1):4–17

    Article  PubMed  PubMed Central  Google Scholar 

  25. Plecitá-Hlavatá L, Ježek J, Ježek P (2015) Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J Bioenerg Biomembr 47(6):467–476

    Article  PubMed  Google Scholar 

  26. Ježek J, Plecitá-Hlavatá L, Ježek P (2018) Aglycemic HepG2 cells switch from aminotransferase glutaminolytic pathway of pyruvate utilization to complete Krebs cycle at hypoxia. Front Endocrinol 9:637

    Article  Google Scholar 

  27. Nguyen LK, Cavadas MA, Scholz CC, Fitzpatrick SF, Bruning U, Cummins EP et al (2013) A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci 126(6):1454–1463

    CAS  PubMed  Google Scholar 

  28. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiology-Lung Cell Mol Physiol 275(4):L818–L26

    Article  CAS  Google Scholar 

  29. Sato M, Tanaka T, Maeno T, Sando Y, Suga T, Maeno Y et al (2002) Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells: role of Src family kinases-dependent pathway. Am J Respir Cell Mol Biol 26(1):127–134

    Article  CAS  PubMed  Google Scholar 

  30. Wiesener M, Turley H, Allen W, Willam C, Eckardt K-U, Talks K et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92(7):2260–2268

    Article  CAS  PubMed  Google Scholar 

  31. Wiesener MS, Jürgensen JS, Rosenberger C, Scholze C, Hörstrup JH, Warnecke C et al (2003) Widespread, hypoxia-inducible expression of HIF‐2α in distinct cell populations of different organs. FASEB J 17(2):271–273

    Article  CAS  PubMed  Google Scholar 

  32. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C et al (2001) HIF-1 is expressed in normoxic tissue and displays an organ‐specific regulation under systemic hypoxia. FASEB J 15(13):2445–2453

    Article  CAS  PubMed  Google Scholar 

  33. Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E et al (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α. J Biol Chem 279(15):14871–14878

    Article  CAS  PubMed  Google Scholar 

  34. Graven KK, Bellur D, Klahn BD, Lowrey SL, Amberger E (2003) HIF-2α regulates glyceraldehyde-3-phosphate dehydrogenase expression in endothelial cells. Biochim Biophys Acta 1626(1–3):10–8

    Article  CAS  PubMed  Google Scholar 

  35. Wenger RH, Kvietiko I, Rolfs A, Gassmann M, Marti HH (1997) Hypoxia-inducible factor-1α is regulated at the post-mRNA level. Kidney Int 51(2):560–563

    Article  CAS  PubMed  Google Scholar 

  36. Semenza GL, Jiang B-H, Leung SW, Passantino R, Concordet J-P, Maire P et al (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537

    Article  CAS  PubMed  Google Scholar 

  37. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  38. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405(1):1–9

    Article  CAS  PubMed  Google Scholar 

  39. Ježek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42(5):604–622

    Article  PubMed  Google Scholar 

  40. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiology-Cell Physiol 292(1):C125–C36

    Article  CAS  Google Scholar 

  41. Wigfield S, Winter S, Giatromanolaki A, Taylor J, Koukourakis M, Harris A (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98(12):1975–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang M, Etokidem E, Lai K (2016) The Leloir pathway of galactose metabolism–a novel therapeutic target for hepatocellular carcinoma. Anticancer Res 36(12):6265–6271

    Article  CAS  PubMed  Google Scholar 

  43. Morava E (2014) Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab 112(4):275–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heerlein K, Schulze A, Hotz L, Bartsch P, Mairbaurl H (2005) Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. Am J Respir Cell Mol Biol 32(1):44–51

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a grant from the Anadolu University (Project Nos. 1809S298, 1905S059).

Author information

Authors and Affiliations

Authors

Contributions

YÖK—Data analyzing and draft manuscript preperation, ZS—Supervision of the research and critical revison of the paper, YÖK and ZS—Final approval of the version to be published.

Corresponding author

Correspondence to Yüksel Öğünç Keçeci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. The authors are fully responsible for data collection and extraction, interpretation, and writing of this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öğünç Keçeci, Y., İncesu, Z. Mitochondrial oxidative phosphorylation became functional under aglycemic hypoxia conditions in A549 cells. Mol Biol Rep 49, 8219–8228 (2022). https://doi.org/10.1007/s11033-022-07400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07400-6

Keywords

Navigation