Skip to main content
Log in

Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cancer cell bioenergetics, maintaining mixed aerobic glycolysis (Warburg phenotype) and oxidative phosphorylation (OXPHOS), is not fully elucidated. Hypoxia-dependent OXPHOS suppression determines aerobic glycolysis. To elucidate further details, we studied hypoxic adaptation (up to 72 h at 5 % oxygen) of hepatocellular carcinoma HepG2 cells. The key regulatory component, hypoxia-inducible factor (HIF)-1α (HIF-1α) was stabilized at 5 h in 5 % oxygen for all three studied regimens, i.e. in glycolytic cells at 5 mM or 25 mM glucose, or in aglycemic (Oxphos) cells when glucose was replaced by galactose. However, the conventional HIF-mediated suppression of respiration was prevented at aglycemia, which correlated with a high proportion of unphosphorylated pyruvate dehydrogenase (PDH) at 5 % oxygen. Such a modified HIF response in Oxphos cells, termed as a non-canonical one, contrasted to conventional respiration suppression down to 45 % or 43 %, observed in hypoxia-adapted glycolytic cells at 5 mM or 25 mM glucose, respectively. These hypoxic glycolytic cells had normally highly phosphorylated PDH and most likely utilized pyruvate by aminotransferase reaction of glutaminolysis to feed at least suppressed respiration. Also, glycolytic cells were rather resistant towards the staurosporine-induced apoptosis, whereas aglycemic (Oxphos) HepG2 cells exhibited much higher susceptibility. We conclude that aglycemia modulates the hypoxic HIF signaling toward a non-canonical response that is unable to carry out complete PDH phosphorylation, allowing a high pyruvate input for OXPHOS from the elevated glycolysis, which together with ongoing glutaminolysis maintain a virtually unchanged respiration. Similar OXPHOS revival may explain distinct tumor sensitivity to chemotherapy and other pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameri K, Rajah AM, Nguyen V, Sanders TA, Jahangiri A, Delay M, Donne M, Choi HJ, Tormos KV, Yeghiazarians Y, Jeffrey SS, Rinaudo PF, Rowitch DH, Aghi M, Maltepe E (2013) Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress. PLoS One 8:e62758

    Article  CAS  Google Scholar 

  • Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E (2015) HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep pii:S2211–1247(15)00033–00039.

  • Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35

    Article  CAS  Google Scholar 

  • Baracca A, Sgarbi G, Padula A, Solaini G (2013) Glucose plays a main role in human fibroblasts adaptation to hypoxia. Int J Biochem Cell Biol 45:1356–1365

    Article  CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    Article  CAS  Google Scholar 

  • Bell EL, Emerling BM, Ricoult SJ, Guarente L (2011) SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30:2986–2996

    Article  CAS  Google Scholar 

  • Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 85:651–657

    Article  Google Scholar 

  • Buccellato LJ, Tso M, Akinci OI, Chandel NS, Budinger GR (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 279:6753–6760

    Article  CAS  Google Scholar 

  • Cerniglia GJ, Dey S, Gallagher-Colombo SM, Daurio NA, Tuttle S, Busch TM, Lin A, Sun R, Esipova TV, Vinogradov SA, Denko N, Koumenis C, Maity A (2015) The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation. Mol Cancer Ther pii: molcanther.0888.

  • Chandel NS (2010) Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol 174:175–181

    Article  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720

    Article  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008a) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186

    Article  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008b) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  Google Scholar 

  • Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    Article  CAS  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  Google Scholar 

  • Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. Embo J 31:2448–2460

    Article  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–414

    Article  CAS  Google Scholar 

  • Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, Hikita M, Shinzawa-Itoh K, Takafuji K, Higo S, Kato H, Yamazaki S, Matsuoka K, Nakano A, Asanuma H, Asakura M, Minamino T, Goto Y, Ogura T, Kitakaze M, Komuro I, Sakata Y, Tsukihara T, Yoshikawa S, Takashima S (2015) Higd1a is a positive regulator of cytochrome c oxidase. Proc Natl Acad Sci U S A 112:1553–1558

    Article  CAS  Google Scholar 

  • Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73.

  • Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877

    Article  CAS  Google Scholar 

  • Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, Lee HC (2013) Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta 1830:4743–4751

    Article  CAS  Google Scholar 

  • Hubbi ME, Hu H, Kshitiz NF, Gilkes DM, Semenza GL (2013) Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 288:20768–20775

    Article  CAS  Google Scholar 

  • Ježek P, Plecitá–Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    Article  Google Scholar 

  • Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol Cell Physiol 271:C1172–C1180

    CAS  Google Scholar 

  • Jose C, Rossignol R (2013) Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies. Int J Biochem Cell Biol 45:123–129

    Article  CAS  Google Scholar 

  • Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K, Fukuda K, Hirota K (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16:203–216

    Article  CAS  Google Scholar 

  • Kikuchi D, Minamishima YA, Nakayama K (2014) Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys Res Commun 451:288–294

    Article  CAS  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  Google Scholar 

  • Krall AS, Christofk HR (2013) Cancer: a metabolic metamorphosis. Nature 496:38–40

    Article  CAS  Google Scholar 

  • Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393–399

    Article  CAS  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Van der Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    Google Scholar 

  • Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, Ody C, Donati Y, Barazzone-Argiroffo C (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. Free Radic Biol Med 42:1062–1074

    Article  Google Scholar 

  • Morava E (2014) Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab 112:275–279

    Article  CAS  Google Scholar 

  • Morten KJ, Badder L, Knowles HJ (2013) Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Pathol 229:755–764

    Article  CAS  Google Scholar 

  • Nguyen LK, Cavadas MA, Scholz CC, Fitzpatrick SF, Bruning U, Cummins EP, Tambuwala MM, Manresa MC, Kholodenko BN, Taylor CT, Cheong A (2013) A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci 126:1454–1463

    Article  CAS  Google Scholar 

  • Owada S, Shimoda Y, Tsuchihara K, Esumi H (2013) Critical role of H2O2 generated by NOX4 during cellular response under glucose deprivation. PLoS One 8:e56628

    Article  CAS  Google Scholar 

  • Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LW, Haigis MC, Villani G, Puri PL, Sartorelli V, Simone C (2013) A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci 70:2015–2029

    Article  CAS  Google Scholar 

  • Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  CAS  Google Scholar 

  • Sauer LA, Dauchy RT, Nagel WO, Morris HP (1980) Mitochondrial malic enzymes. Mitochondrial NAD(P) + −dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas. J Biol Chem 255:3844–3848

  • Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF1 is necessary mediator of the Pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444

    Article  CAS  Google Scholar 

  • Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    Article  CAS  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268

    Article  CAS  Google Scholar 

  • Semenza GL (2012a) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  Google Scholar 

  • Semenza GL (2012b) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    Article  CAS  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671

    Article  CAS  Google Scholar 

  • Smolková K, Plecitá–Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950–968

    Article  Google Scholar 

  • Smolková K, Dvořák A, Zelenka J, Vítek L, Ježek P Reductive carboxylation and 2-hydroxyglutarate formation by wild–type IDH2 in breast carcinoma cells. Int J Biochem Cell Biol. 2015;47

  • Sookoian S, Pirola CJ (2012) Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol 18:3775–3781

    Article  CAS  Google Scholar 

  • Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19:285–292

    Article  CAS  Google Scholar 

  • Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26

    Article  CAS  Google Scholar 

  • Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB (2009) The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci U S A 106:21660–21665

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    Article  CAS  Google Scholar 

  • Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    Article  CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  CAS  Google Scholar 

  • Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML, Harris AL (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98:1975–1984

    Article  CAS  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    Article  CAS  Google Scholar 

  • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136

    Article  CAS  Google Scholar 

  • Yamashita H, Takenoscita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98:9116–9121

    Article  CAS  Google Scholar 

  • Yuneva M (2008) Finding an “Achilles’ heel” of cancer. Cell Cycle 7:2083–2089

    Article  CAS  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC dependent apoptosis in human cells. J Cell Biol 178:93–105

    Article  CAS  Google Scholar 

  • Zepeda AB, Pessoa Jr A, Castillo RL, Figueroa CA, Pulgar VM, Farías JG (2013) Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct 31:451–459

    Article  CAS  Google Scholar 

  • Zhang Y, Yang JM (2013) Altered energy metabolism in cancer. A unique opportunity for the therapeutic intervention. Cancer Biol Ther 2:81–89

    Article  Google Scholar 

  • Zielke HR, Zielke CL, Ozand PT (1984) Glutamine: a major energy source for cultured mammalian cells. Fed Proc 43:121–125

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grants from the Grant Agency of the Czech Republic No. 302/10/0346 and No. 13-02033 to P.J., Czech Ministry of Education grant No. LH11055 to L.P.H., and the institutional support projects AV0Z50110509 and RVO67985823. We gratefully acknowledge the help of Dr. Katarína Smolková with cytochrome c oxidase kinetics and citrate synthase activity measurements and the excellent technical assistance of Lenka Josková with cell cultures and Jana Vaicová with immunoblotting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Ježek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plecitá-Hlavatá, L., Ježek, J. & Ježek, P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J Bioenerg Biomembr 47, 467–476 (2015). https://doi.org/10.1007/s10863-015-9628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9628-6

Keywords

Navigation