Skip to main content
Log in

Screening of OTULIN gene mutation with targeted next generation sequencing in Turkish populations and in silico analysis of these mutations

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

OTULIN-related autoinflammatory syndrome (ORAS) is an autosomal recessive disease characterized by systemic inflammation, recurrent fever. Due to limited knowledge about the OTULIN DNA variants that cause ORAS, the diagnosis and treatment of this disease is difficult. In this study, we aim to identify OTULIN DNA variants responsible for the genetic pathology of ORAS and observe the effects of these variants on the OTULIN protein structure and the function with different bioinformatics approaches.

Methods

The present study included 3230 individuals with the suspicion of an autoinflammatory disease who were referred to Ege University Children’s Hospital Molecular Medicine Laboratory. OTULIN variants were detected using a panel consisting of 37 different autoinflammatory diseases (AID) genes via targeted Next-Generation Sequencing.

Results

As a result of the study, DNA variants associated with various AID were detected in 65% of the individuals to whom the panel was applied. Among these variants, only three different OTULIN variants (p.Val82Ile, p.Gln115His and p.Leu131_Arg132insLeuCysThrGlu) were detected. The pathogenic effects of the variants detected in the OTULIN gene were determined by using Polyphen2 as “Probably Pathogenic” for the p.Val82Ile and “benign” for the p.Gln115His. At the same time, the effects of these variants on the structure and function of the OTULIN protein were investigated by in silico approaches. Both variants reduce protein stability and binding affinity.

Conclusion

The results of the current study suggest that the evaluation of OTULIN variants with in silico approaches will contribute to the development of personalized treatments by diagnosing the disease specific to the variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ORAS:

OTULIN-Related autoinflammatory syndrome

Met1-Ub:

Met1-linked polyubiquitin

LUBAC:

Linear ubiquitin chain assembly complex

NF-kB:

Nuclear factor kappa B

IKB:

NF-kB inhibitor kabba-B

DUB:

Deubiquitinase

OTU-cat:

Catalytic OTU domain

AID:

Autoinflammatory diseases

NGS:

Next generation sequencing

SA:

Solvent accessibility

VDW:

Van Der Walls

EE:

Electrostatic energy

BSA:

Buried surface area

HGMD:

Human gene mutation database

ACMG:

The American College of Medical Genetics and Genomics

PDB:

Protein Data Bank

References

  1. Aksentijevich I, Schnappauf O (2021) Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 17:405–425. https://doi.org/10.1038/s41584-021-00614-1

    Article  CAS  PubMed  Google Scholar 

  2. Krainer J, Siebenhandl S, Weinhäusel A (2020) Systemic autoinflammatory diseases. J Autoimmun. https://doi.org/10.1016/j.jaut.2020.102421

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tartey S, Kanneganti TD (2020) Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol 107:379–391. https://doi.org/10.1002/JLB.3MIR0919-191R

    Article  CAS  PubMed  Google Scholar 

  4. Aksentijevich I, Centola M, Deng Z et al (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807. https://doi.org/10.1016/S0092-8674(00)80539-5

    Article  Google Scholar 

  5. Rusmini M, Federici S, Caroli F et al (2016) Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis 75:1550–1557. https://doi.org/10.1136/annrheumdis-2015-207701

    Article  CAS  PubMed  Google Scholar 

  6. Damgaard RB, Walker JA, Marco-Casanova P et al (2016) The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166:1215-1230.e20. https://doi.org/10.1016/j.cell.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou Q, Yu X, Demirkaya E et al (2016) Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci USA 113:10127–10132. https://doi.org/10.1073/pnas.1612594113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jahan AS, Elbæk CR, Damgaard RB (2021) Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ 28(2):473–492

    Article  CAS  Google Scholar 

  9. Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, Gondo Y (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498(7454):318–324

    Article  CAS  Google Scholar 

  10. Keusekotten K, Elliott PR, Glockner L et al (2013) XOTULIN antagonizes LUBAC signaling by specifically hydrolyzing met1-linked polyubiquitin. Cell 153:1312. https://doi.org/10.1016/j.cell.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verboom L, Hoste E, van Loo G (2021) OTULIN in NF-κB signaling, cell death, and disease. Trends Immunol 42:590–603. https://doi.org/10.1016/j.it.2021.05.003

    Article  CAS  PubMed  Google Scholar 

  12. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  13. Celebi G, Kesim H, Ozer E et al (2020) The effect of dysfunctional ubiquitin enzymes in the pathogenesis of most common diseases. Int J Mol Sci 21:1–24. https://doi.org/10.3390/ijms21176335

    Article  CAS  Google Scholar 

  14. Dittmar G, Winklhofer KF (2020) Linear ubiquitin chains: cellular functions and strategies for detection and quantification. Front Chem 7:1–16. https://doi.org/10.3389/fchem.2019.00915

    Article  CAS  Google Scholar 

  15. Hrdinka M, Gyrd-Hansen M (2017) The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol Cell 68:265–280. https://doi.org/10.1016/j.molcel.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Elliott PR, Nielsen SV, Marco-Casanova P et al (2014) Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 54:335–348. https://doi.org/10.1016/j.molcel.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damgaard RB, Elliott PR, Swatek KN et al (2019) OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol Med 11:1–17. https://doi.org/10.15252/emmm.201809324

    Article  CAS  Google Scholar 

  18. Nabavi M, Shahrooei M, Rokni-Zadeh H et al (2019) Auto-inflammation in a patient with a novel homozygous OTULIN mutation. J Clin Immunol 39:138–141. https://doi.org/10.1007/s10875-019-00599-3

    Article  CAS  PubMed  Google Scholar 

  19. Madeira F, Park YM, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076

    Article  CAS  PubMed  Google Scholar 

  21. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76(1):7–20

    Google Scholar 

  23. Vaser R, Adusumalli S, Leng SN et al (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9. https://doi.org/10.1038/nprot.2015.123

    Article  CAS  PubMed  Google Scholar 

  24. Schwarz JM, Cooper DN, Schuelke M et al (2014) Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  25. Shihab HA, Gough J, Cooper DN et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65. https://doi.org/10.1002/humu.22225

    Article  CAS  PubMed  Google Scholar 

  26. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:239–242. https://doi.org/10.1093/nar/gkl190

    Article  CAS  Google Scholar 

  27. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:306–310. https://doi.org/10.1093/nar/gki375

    Article  CAS  Google Scholar 

  28. Weber A, Elliott PR, Pinto-Fernandez A et al (2017) Linear diubiquitin-based probe for efficient and selective detection of the deubiquitinating enzyme OTULIN. Cell Chem Biol 24:1299-1313.e7

    Article  CAS  Google Scholar 

  29. Van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  31. Savojardo C, Manfredi M, Martelli PL et al (2021) Solvent accessibility of residues undergoing pathogenic variations in humans: from protein structures to protein sequences. Front Mol Biosci 7:1–9

    Article  Google Scholar 

  32. Pereira R, Oliveira J, Sousa M (2020) Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 9(1):132

    Article  CAS  Google Scholar 

  33. Guzel F, Romano M, Keles E et al (2021) Next generation sequencing based multiplex long-range PCR for routine genotyping of autoinflammatory disorders. Front Immunol 12:1–14. https://doi.org/10.3389/fimmu.2021.666273

    Article  CAS  Google Scholar 

  34. Stenson PD, Ball EV, Mort M et al (2003) Human gene mutation database (HGMD®): 2003 update. Hum Mutat 21(6):577–581. https://doi.org/10.1002/humu.10212

    Article  CAS  PubMed  Google Scholar 

  35. de Menthière CS, Terrière S, Pugnère D et al (2003) INFEVERS: the registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res 31:282–285. https://doi.org/10.1093/nar/gkg031

    Article  CAS  Google Scholar 

  36. Richards S, Aziz N, Bale S et al (2015) ACMG Laboratory Quality Assurance Committee Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  37. Duarte AJ, Ribeiro D, Moreira L (2018) In silico analysis of missense mutations as a first step in functional studies: examples from two sphingolipidoses. Int J Mol Sci 19(11):3409

    Article  Google Scholar 

  38. Camilloni C, Bonetti D, Morrone A et al (2016) Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep 6:1–9. https://doi.org/10.1038/srep28285

    Article  CAS  Google Scholar 

  39. Betts MJ, Russell RB (2003) Amino acid properties and consequences of subsitutions. Bioinform Genetic. https://doi.org/10.1002/9780470059180.ch13

    Article  Google Scholar 

  40. Čalyševa J, Vihinen M (2017) PON-SC—program for identifying steric clashes caused by amino acid substitutions. BMC Bioinform. https://doi.org/10.1186/s12859-017-1947-7

    Article  Google Scholar 

  41. Nakamura H (1996) Roles of electrostatic interaction in proteins. Q Rev Biophys 29:1–90

    Article  CAS  Google Scholar 

  42. Strickler SS, Gribenko AV, Gribenko AV et al (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry 45:2761–2766. https://doi.org/10.1021/bi0600143

    Article  CAS  PubMed  Google Scholar 

  43. Shashikala HBM, Chakravorty A, Alexov E (2019) Modeling electrostatic force in protein-protein recognition. Front Mol Biosci 6:1–11

    Article  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

YG and BK the manuscript preparation and all data analysis. AB and YG the experiment design, selection study group and AB. collection samples from patients. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yüksel Gezgin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Ethical approval was provided from the Ethics committee of Ege University, Izmir, Turkey (21-12. /IT/20). This study was conducted in accordance with the Helsinki Ethical Standards.

Informed consent

Since it was a retrospective study based on archive scanning, informed consent to participate was not obtained from the subjects. We recalled the patients with the OTULIN mutation and informed consent was obtained from these patients. The informed consent was granted by the parents/LAR of the children in the study. The ages of the subjects in this study ranged from 2 months to 18 years old.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezgin, Y., Kırnaz, B. & Berdeli, A. Screening of OTULIN gene mutation with targeted next generation sequencing in Turkish populations and in silico analysis of these mutations. Mol Biol Rep 49, 4643–4652 (2022). https://doi.org/10.1007/s11033-022-07312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07312-5

Keywords

Navigation