Skip to main content
Log in

SHOX2 methylation in Vietnamese patients with lung cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

DNA methylation on cytosine in the CpG dinucleotides is one of the most common epigenetic perturbations taking place during cancer initiation, progression, occurrence and resistance therapy. DNA methylation seems to be sufficiently stable epigenetic modification to be utilized as a cancer biomarker in in vitro diagnostic (IVD) settings. Nowadays, the SHOX2 methylation (mSHOX2) is one of the most valuable DNA methylation biomarkers of lung cancer that is the leading cause of cancer death. It is being continuously validated across ethnicities, lifestyles and lifespan. This study focused on characteristics of mSHOX2 in Vietnamese patients with lung cancer since a lack of investigation and evidence of its utility in this country.

Methods

The probe and primer sets were designed according to the MethyLight method for quantitative assessment of the mSHOX2 in 214 formalin-fixed paraffin-embedded (FFPE) lung tissues and 57 plasma samples.

Results

mSHOX2 in FFPE tissues allowed discriminating benign and malignant lung diseases with 60% (95% CI 50.7–68.8%) sensitivity and 90.4% (95% CI 82.6–95.5%) specificity. Importantly, based on mSHOX2 in plasma, lung cancer could be detected with 83.3% (95% CI 65.3–94.4%) sensitivity and 92.6% (95% CI 75.7–99.1%) specificity, respectively. There were insignificant associations between mSHOX2 with age, cancer stage, EGFR mutation and serum CEA, CYFRA21-1 concentrations except for that gender.

Conclusion

Our study indicated that mSHOX2 was satisfactory for distinguishing malignant from benign lung tissue and noninvasively detecting lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20. https://doi.org/10.1016/j.ccr.2012.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beltran-Garcia J, Osca-Verdegal R, Mena-Molla S et al (2019) Epigenetic IVD tests for personalized precision medicine in cancer. Front Genet 10:621. https://doi.org/10.3389/fgene.2019.00621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hao X, Luo H, Krawczyk M et al (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA 114:7414–7419. https://doi.org/10.1073/pnas.1703577114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palanca-Ballester C, Rodriguez-Casanova A, Torres S et al (2021) Cancer epigenetic biomarkers in liquid biopsy for high incidence malignancies. Cancers (Basel). https://doi.org/10.3390/cancers13123016

    Article  Google Scholar 

  5. Xu Z, Wang Y, Wang L et al (2020) The performance of the SHOX2/PTGER4 methylation assay is influenced by cancer stage, age, type and differentiation. Biomark Med 14:341–351. https://doi.org/10.2217/bmm-2019-0325

    Article  CAS  PubMed  Google Scholar 

  6. Zhao QT, Guo T, Wang HE et al (2015) Diagnostic value of SHOX2 DNA methylation in lung cancer: a meta-analysis. OncoTargets Ther 8:3433–3439. https://doi.org/10.2147/OTT.S94300

    Article  CAS  Google Scholar 

  7. Kader F, Ghai M (2017) DNA methylation-based variation between human populations. Mol Genet Genomics 292:5–35. https://doi.org/10.1007/s00438-016-1264-2

    Article  CAS  PubMed  Google Scholar 

  8. Mckennan C, Naughton K, Stanhope C et al (2021) Longitudinal data reveal strong genetic and weak non-genetic components of ethnicity-dependent blood DNA methylation levels. Epigenetics 16:662–676. https://doi.org/10.1080/15592294.2020.1817290

    Article  PubMed  Google Scholar 

  9. Jin S, Zhu D, Shao F et al (2021) Efficient detection and post-surgical monitoring of colon cancer with a multi-marker DNA methylation liquid biopsy. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2017421118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Chen X, Zhang L et al (2020) Performance evaluation of SHOX2 and RASSF1A methylation for the aid in diagnosis of lung cancer based on the analysis of FFPE specimen. Front Oncol 10:565780. https://doi.org/10.3389/fonc.2020.565780

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  12. Ellis PM, Vandermeer R (2011) Delays in the diagnosis of lung cancer. J Thorac Dis 3:183–188. https://doi.org/10.3978/j.issn.2072-1439.2011.01.01

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gildea TR, Dacosta Byfield S, Hogarth DK et al (2017) A retrospective analysis of delays in the diagnosis of lung cancer and associated costs. Clinicoecon Outcomes Res 9:261–269. https://doi.org/10.2147/CEOR.S132259

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kneip C, Schmidt B, Seegebarth A et al (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6:1632–1638. https://doi.org/10.1097/JTO.0b013e318220ef9a

    Article  PubMed  Google Scholar 

  15. Wei B, Wu F, Xing W et al (2021) A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer. Sci Rep 11:16782. https://doi.org/10.1038/s41598-021-96242-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss G, Schlegel A, Kottwitz D et al (2017) Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease. J Thorac Oncol 12:77–84. https://doi.org/10.1016/j.jtho.2016.08.123

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nguyen SM, Deppen S, Nguyen GH et al (2019) Projecting cancer incidence for 2025 in the 2 largest populated cities in Vietnam. Cancer Control 26:1073274819865274. https://doi.org/10.1177/1073274819865274

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pham T, Bui L, Kim G et al (2019) Cancers in Vietnam-burden and control efforts: a narrative scoping review. Cancer Control 26:1073274819863802. https://doi.org/10.1177/1073274819863802

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32. https://doi.org/10.1093/nar/28.8.e32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  21. Santourlidis S, Ghanjati F, Beermann A et al (2016) IDLN-MSP: idiolocal normalization of real-time methylation-specific PCR for genetic imbalanced DNA specimens. Biotechniques 60:84–87. https://doi.org/10.2144/000114379

    Article  CAS  PubMed  Google Scholar 

  22. Jain S, Chen S, Chang KC et al (2012) Impact of the location of CpG methylation within the GSTP1 gene on its specificity as a DNA marker for hepatocellular carcinoma. PLoS ONE 7:e35789. https://doi.org/10.1371/journal.pone.0035789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Russo G, Tramontano A, Iodice I et al (2021) Epigenome chaos: stochastic and deterministic DNA methylation events drive cancer evolution. Cancers (Basel). https://doi.org/10.3390/cancers13081800

    Article  PubMed Central  Google Scholar 

  24. Coyle KM, Boudreau JE, Marcato P (2017) Genetic mutations and epigenetic modifications: driving cancer and informing precision medicine. Biomed Res Int 2017:9620870. https://doi.org/10.1155/2017/9620870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taryma-Lesniak O, Sokolowska KE, Wojdacz TK (2020) Correction to: current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin Epigenet 12:107. https://doi.org/10.1186/s13148-020-00902-9

    Article  Google Scholar 

  26. Locke WJ, Guanzon D, Ma C et al (2019) DNA methylation cancer biomarkers: translation to the clinic. Front Genet 10:1150. https://doi.org/10.3389/fgene.2019.01150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S, Nguyen TL, Wong EM et al (2020) Genetic and environmental causes of variation in epigenetic aging across the lifespan. Clin Epigenet 12:158. https://doi.org/10.1186/s13148-020-00950-1

    Article  CAS  Google Scholar 

  28. Mitchell C, Schneper LM, Notterman DA (2016) DNA methylation, early life environment, and health outcomes. Pediatr Res 79:212–219. https://doi.org/10.1038/pr.2015.193

    Article  CAS  PubMed  Google Scholar 

  29. Husquin LT, Rotival M, Fagny M et al (2018) Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. Genome Biol 19:222. https://doi.org/10.1186/s13059-018-1601-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seijo LM, Peled N, Ajona D et al (2019) Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol 14:343–357. https://doi.org/10.1016/j.jtho.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  31. Tomasetti M, Amati M, Neuzil J et al (2017) Circulating epigenetic biomarkers in lung malignancies: from early diagnosis to therapy. Lung Cancer 107:65–72. https://doi.org/10.1016/j.lungcan.2016.05.023

    Article  PubMed  Google Scholar 

  32. Su Y, Fang HB, Jiang F (2018) An epigenetic classifier for early stage lung cancer. Clin Epigenet 10:68. https://doi.org/10.1186/s13148-018-0502-3

    Article  CAS  Google Scholar 

  33. Dietrich D, Liebenberg V, Schmidt B et al (2012) Development and performance evaluation of a CE-IVD for measuring SHOX2 DNA methylation in bronchial aspirates for the diagnosis of lung cancer. Lung Cancer 77:S22. https://doi.org/10.1016/j.lungcan.2012.05.036

    Article  Google Scholar 

  34. Rizk M, Helal S, Youssef A et al (2020) SHOX2 gene methylation in Egyptians having lung cancer. Egypt J Med Hum Genet. https://doi.org/10.1186/s43042-020-00069-1

    Article  Google Scholar 

  35. Dimberg J, Hong TT, Skarstedt M et al (2013) Analysis of APC and IGFBP7 promoter gene methylation in Swedish and Vietnamese colorectal cancer patients. Oncol Lett 5:25–30. https://doi.org/10.3892/ol.2012.967

    Article  CAS  PubMed  Google Scholar 

  36. Truong PK, Lao TD, Doan TP et al (2014) BRCA1 promoter hypermethylation signature for early detection of breast cancer in the Vietnamese population. Asian Pac J Cancer Prev 15:9607–9610. https://doi.org/10.7314/apjcp.2014.15.22.9607

    Article  PubMed  Google Scholar 

  37. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  CAS  PubMed  Google Scholar 

  38. Guyard A, Boyez A, Pujals A et al (2017) DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks. Virchows Arch 471:491–500. https://doi.org/10.1007/s00428-017-2213-0

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt B, Liebenberg V, Dietrich D et al (2010) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 10:600. https://doi.org/10.1186/1471-2407-10-600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konecny M, Markus J, Waczulikova I et al (2016) The value of SHOX2 methylation test in peripheral blood samples used for the differential diagnosis of lung cancer and other lung disorders. Neoplasma 63:246–253. https://doi.org/10.4149/210_150419n208

    Article  CAS  PubMed  Google Scholar 

  41. Feng H, Shao W, Du L et al (2020) Detection of SHOX2 DNA methylation by methylation-specific PCR in non-small cell lung cancer. Transl Cancer Res 9:6070–6077. https://doi.org/10.21037/tcr-20-887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turajlic S, Sottoriva A, Graham T et al (2019) Resolving genetic heterogeneity in cancer. Nat Rev Genet 20:404–416. https://doi.org/10.1038/s41576-019-0114-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center for Life Science Research (VNU University of Science) for technical support.

Funding

This study was financially supported by Grant 108.01-2019.306 from the Ministry of Science and Technology, Viet Nam.

Author information

Authors and Affiliations

Authors

Contributions

VTTL: Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Writing—review & editing. NTN and NTT: Investigation, Formal analysis. PATD: Data curation, Formal analysis. VDL, TVT and HVS: Resources.

Corresponding author

Correspondence to Thi Thuong Lan Vo.

Ethics declarations

Conflict of interest

The authors Vo Thi Thuong Lan, Nguyen Thuy Ngan, Nguyen Thuy Trang, Pham Anh Thuy Duong, Vuong Dieu Linh, Ta Van To and Ho Van Son declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with the ethical standards approved by the Ethics Committee of Vietnam Academy of Science and Technology (03-2020/NCHG-HDDD).

Informed consent

Informed written consents were obtained from healthy participants and patients included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2022_7172_MOESM1_ESM.docx

Supplementary file1 (DOCX 216 KB) Supplementary Fig. 1. Nucleotide sequence of the SHOX2 promoter (NG_047079 positions 7750–7730) and position of MSP primers used for methylation analysis of SHOX2.1 and SHOX2.2 regions.

11033_2022_7172_MOESM2_ESM.docx

Supplementary file2 (DOCX 15 KB) Supplementary Table 1. Primer sets and probe, and quantitative real-time PCR conditions for measurement of the SHOX2 methylation.

11033_2022_7172_MOESM3_ESM.docx

Supplementary file3 (DOCX 14 KB) Supplementary Table 2. Specificity of primer sets used for amplification of the methylated SHOX2.

11033_2022_7172_MOESM4_ESM.docx

Supplementary file4 (DOCX 18 KB) Supplementary Table 3. Association of the SHOX2 methylation status with the clinicopathological characteristics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.T.L., Nguyen, T.N., Nguyen, T.T. et al. SHOX2 methylation in Vietnamese patients with lung cancer. Mol Biol Rep 49, 3413–3421 (2022). https://doi.org/10.1007/s11033-022-07172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07172-z

Keywords

Navigation