Skip to main content

Advertisement

Log in

The correlation of long non-coding RNAs IFNG-AS1 and ZEB2-AS1 with IFN-γ and ZEB-2 expression in PBMCs and clinical features of patients with coronary artery disease

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aberrant expression of long non-coding RNAs (lncRNAs) can contribute to the pathogenesis of coronary artery disease (CAD). In this study, we aimed to evaluate the expression of lncRNA interferon γ-antisense 1 (IFNG-AS1), zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1), and their direct target genes (IFN-γ and ZEB2, respectively) in peripheral blood mononuclear cell (PBMC) from CAD and healthy individuals.

Methods and results

We recruited 40 CAD patients and 40 healthy individuals. After doing some bioinformatics analyses, the expressions of IFNG-AS1/ ZEB2-AS1 lncRNAs and IFN-γ/ ZEB2 in PBMCs were measured using quantitative real-time PCR. The possible correlation between the putative lncRNAs and disease severity was also assessed. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive role of lncRNAs as diagnostic biomarkers in CAD patients. The expressions of IFNG-AS1 lncRNA as well as IFN-γ and ZEB2 genes were significantly reduced in CAD patients compared to healthy subjects. In contrast, the expression of ZEB2-AS1 was up-regulated in these patients. Linear regression analysis unveiled that there is a positive correlation between the expression of IFNG-AS1 and IFN-γ, also similarly, ZEB2-AS1 and ZEB2 in PBMCs of subjects. Moreover, the expression of IFNG-AS1 and ZEB2-AS1 correlated with the Gensini score. The area under the ROC curves ranged from 0.633–0.742 for ZEB2-AS1/ZEB2 and IFNG-AS1/IFN-γ, respectively.

Conclusions

Our results indicated that the dysregulation of IFNG-AS1/IFN-γ and ZEB2-AS1/ZEB2 in PBMCs of CAD patients may be involved in CAD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  2. Lee S-E et al (2018) Quantification of coronary atherosclerosis in the assessment of coronary artery disease. Circ Cardiovasc Imaging 11(7):e007562

    Article  PubMed  Google Scholar 

  3. Malakar AK et al (2019) A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 234(10):16812–16823

    Article  CAS  PubMed  Google Scholar 

  4. Kitsios GD et al (2011) Heterogeneity of the phenotypic definition of coronary artery disease and its impact on genetic association studies. Circ Cardiovasc Genet 4(1):58–67

    Article  PubMed  Google Scholar 

  5. Rafiei A et al (2021) Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life 73(1):223–237

    Article  CAS  PubMed  Google Scholar 

  6. Mohammad-Rezaei M et al (2021) Serum levels of IL-32 in patients with coronary artery disease and its relationship with the serum levels of IL-6 and TNF-alpha. Mol Biol Rep 48(5):4263–4271

    Article  CAS  PubMed  Google Scholar 

  7. Leentjens J et al (2018) Trained innate immunity as a novel mechanism linking infection and the development of atherosclerosis. Circ Res 122(5):664–669

    Article  CAS  PubMed  Google Scholar 

  8. McLaren JE, Ramji DP (2009) Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 20(2):125–135

    Article  CAS  PubMed  Google Scholar 

  9. Voloshyna I, Littlefield MJ, Reiss AB (2014) Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 24(1):45–51

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez D et al (2020) ZEB2 regulates activation and exhaustion programming of CD8+ t cells in atherosclerosis. Arterioscler Thromb Vasc Biol 40(1):258–258

    Google Scholar 

  11. Huang Y, Dai W, Li Y (2019) Potential associations of testosterone/estradiol ratio, leukocyte hTERT expression and PBMC telomerase activity with aging and the presence of coronary artery disease in men. Exp Gerontol 117:38–44

    Article  CAS  PubMed  Google Scholar 

  12. Shan K et al (2016) Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis 7(6):e2248–e2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cardona-Monzonís A et al (2020) Non-coding RNAs and coronary artery disease. Non-coding RNAs in Cardiovascular Diseases. Springer, pp 273–285

    Chapter  Google Scholar 

  14. Tang N et al (2018) Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther 36(4):12436

    Article  CAS  Google Scholar 

  15. Li Y et al (2015) LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns. Oncotarget 6(37):39793–39805

    Article  PubMed  PubMed Central  Google Scholar 

  16. Josefs T, Boon RA (2020) The long non-coding road to atherosclerosis. Curr Atheroscler Rep 22(10):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cremer S et al (2019) Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139(10):1320–1334

    Article  CAS  PubMed  Google Scholar 

  18. Gast M et al (2019) Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res 115(2):302–314

    Article  CAS  PubMed  Google Scholar 

  19. Cai Y et al (2016) Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 112(3):714–724

    Article  CAS  PubMed  Google Scholar 

  20. Lu Y et al (2020) 2017 ACC/AHA blood pressure classification and incident peripheral artery disease: the atherosclerosis risk in communities (ARIC) study. Eur J Prev Cardiol 27(1):51–59

    Article  PubMed  Google Scholar 

  21. Gibbons RJ, Smith S, Antman E (2003) American College of Cardiology/American heart association clinical practice guidelines: part I: where do they come from? Circulation 107(23):2979–2986

    Article  PubMed  Google Scholar 

  22. MARK, D.B., et al (1987) Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med 106(6):793–800

    Article  Google Scholar 

  23. Cheng L et al (2019) LncRNA2Target v2 0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 47(1):140–144

    Article  CAS  Google Scholar 

  24. Chen J et al (2021) LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res 49(D1):D969–D980

    Article  CAS  PubMed  Google Scholar 

  25. Paraskevopoulou MD et al (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44(D1):D231–D238

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W et al (2018) SFPEL-LPI: sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLoS Comput Biol 14(12):e1006616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Y et al (2020) RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res 48(D1):D189–D197

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  29. Sanaei MJ et al (2021) Up-regulated CCL18, CCL28 and CXCL13 expression is associated with the risk of gastritis and peptic ulcer disease in helicobacter pylori infection. Am J Med Sci 361(1):43–54

    Article  PubMed  Google Scholar 

  30. Libby, P. and G.K. Hansson (2018) Taming immune and inflammatory responses to treat atherosclerosis., American College of Cardiology Foundation Washington, DC.

  31. Hajar R (2017) Risk factors for coronary artery disease: historical perspectives. Heart views: the official journal of the Gulf Heart Association 18(3):109

    Article  Google Scholar 

  32. Moriya J (2019) Critical roles of inflammation in atherosclerosis. J Cardiol 73(1):22–27

    Article  PubMed  Google Scholar 

  33. Aryal B, Rotllan N, Fernández-Hernando C (2014) Noncoding RNAs and atherosclerosis. Curr Atheroscler Rep 16(5):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pierce JB, Feinberg MW (2020) Long noncoding RNAs in atherosclerosis and vascular injury: pathobiology, biomarkers, and targets for therapy. Arterioscler Thromb Vasc Biol 40(9):2002–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petermann F et al (2019) The magnitude of IFN-γ responses is fine-tuned by DNA architecture and the non-coding transcript of Ifng-as1. Mol Cell 75(6):1229-1242.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H et al (2016) Aberrant expression of long noncoding RNA TMEVPG1 in patients with primary immune thrombocytopenia. Autoimmunity 49(7):496–502

    Article  CAS  PubMed  Google Scholar 

  37. Peng H et al (2015) The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep 5(1):1–9

    Google Scholar 

  38. Padua, D et al., (2016) A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology 311(3): 446-457

  39. Luo M et al (2017) IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol 183:121–131

    Article  CAS  PubMed  Google Scholar 

  40. Fallah H et al (2020) IFNG/IFNG-AS1 expression level balance: implications for autism spectrum disorder. Metab Brain Dis 35(2):327–333

    Article  CAS  PubMed  Google Scholar 

  41. Yaghoobi H et al (2018) Assessment of expression of interferon γ (IFN-G) gene and its antisense (IFNG-AS1) in breast cancer. World journal of surgical oncology 16(1):1–7

    Article  Google Scholar 

  42. Li J, Ley K (2015) Lymphocyte migration into atherosclerotic plaque. Arterioscler Thromb Vasc Biol 35(1):40–49

    Article  CAS  PubMed  Google Scholar 

  43. Wu X et al (2017) LncRNA ZEB2-AS1 promotes bladder cancer cell proliferation and inhibits apoptosis by regulating miR-27b. Biomed Pharmacother 96:299–304

    Article  CAS  PubMed  Google Scholar 

  44. Wu F et al (2019) The lncrna ZeB2-as1 is upregulated in gastric cancer and affects cell proliferation and invasion via mir-143-5p/hiF-1α axis. Onco Targets Ther 12:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng Z, Liu L, Li Q (2020) lncRNA ZEB2-AS1 stimulates cardiac hypertrophy by downregulating PTEN. Exp Ther Med 20(5):1–1

    Article  CAS  Google Scholar 

  46. Lan T et al (2016) Downregulation of ZEB2-AS1 decreased tumor growth and metastasis in hepatocellular carcinoma. Mol Med Rep 14(5):4606–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gladka MM et al (2021) Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun 12(1):1–16

    Article  CAS  Google Scholar 

  48. Ma L et al (2020) Multiple independent mechanisms link gene polymorphisms in the region of ZEB2 with risk of coronary artery disease. Atherosclerosis 311:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scott CL, Omilusik KD (2019) ZEBs: novel players in immune cell development and function. Trends Immunol 40(5):431–446

    Article  CAS  PubMed  Google Scholar 

  50. Xu Y, Shao B (2018) Circulating lncRNA IFNG-AS1 expression correlates with increased disease risk, higher disease severity and elevated inflammation in patients with coronary artery disease. J Clin Lab Analysis 32(7):22452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was approved by all authors.

Corresponding author

Correspondence to Farnaz Khodabakhsh.

Ethics declarations

Conflict of interest

No competing interests were declared.

Ethical approval

The Ethics Committee of AJA University of Medical Sciences was approved this study under the declaration code of “IR.AJAUMS.REC.1400.140.” All participants signed written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

rafiei, A., Khodabakhsh, F., Cohan, R.A. et al. The correlation of long non-coding RNAs IFNG-AS1 and ZEB2-AS1 with IFN-γ and ZEB-2 expression in PBMCs and clinical features of patients with coronary artery disease. Mol Biol Rep 49, 3389–3399 (2022). https://doi.org/10.1007/s11033-022-07168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07168-9

Keywords

Navigation