Skip to main content

Advertisement

Log in

Downregulation of topoisomerase 1 and 2 with acriflavine sensitizes bladder cancer cells to cisplatin-based chemotherapy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered.

Methods and results

Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells’ sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2.

Conclusions

Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374:239–249. https://doi.org/10.1016/S0140-6736(09)60491-8

    Article  CAS  PubMed  Google Scholar 

  2. Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15:25–41. https://doi.org/10.1038/nrc3817

    Article  CAS  PubMed  Google Scholar 

  3. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME et al (2017) Bladder cancer. Nat Rev Dis Primers 3:1–19. https://doi.org/10.1038/nrdp.2017.22

    Article  Google Scholar 

  4. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Wang L, Tang Y, Gong G, Liu L, Chen M et al (2016) Maspin enhances cisplatin chemosensitivity in bladder cancer T24 and 5637 cells and correlates with prognosis of muscle-invasive bladder cancer patients receiving cisplatin based neoadjuvant chemotherapy. J Exp Clin Cancer Res 35:1–11. https://doi.org/10.1186/s13046-015-0282-y

    Article  CAS  Google Scholar 

  6. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T et al (2005) Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 23:4602–4608. https://doi.org/10.1200/JCO.2005.07.757

    Article  CAS  PubMed  Google Scholar 

  7. Zargar P, Ghani E, Mashayekhi FJ, Ramezani A, Eftekhar E (2018) Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells. Oncol Lett 15:10084–10090. https://doi.org/10.3892/ol.2018.8569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin T, He S, Shen G, Wang Y (2014) HIF-1 dimerization inhibitor acriflavine enhances antitumor activity of sunitinib in breast cancer model. Oncol Res 22:139–145. https://doi.org/10.3727/096504014X13983417587366

    Article  PubMed  Google Scholar 

  9. Lee CJ, Yue CH, Lin YY, Wu JC, Liu JY (2014) Antitumor activity of acriflavine in human hepatocellular carcinoma cells. Anticancer Res 34:3549–3556

    CAS  PubMed  Google Scholar 

  10. Nehme R, Hallal R, El Dor M, Kobeissy F, Gouilleux F, Mazurier F et al (2021) Repurposing of acriflavine to target chronic myeloid leukemia treatment. Curr Med Chem 28:2218–2233. https://doi.org/10.2174/0929867327666200908114411

    Article  CAS  PubMed  Google Scholar 

  11. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106:17910–17915. https://doi.org/10.1073/pnas.0909353106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weijer R, Broekgaarden M, Krekorian M, Alles LK, van Wijk AC, Mackaaij C et al (2016) Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget 7:3341. https://doi.org/10.18632/oncotarget.6490

    Article  PubMed  Google Scholar 

  13. Hassan S, Laryea D, Mahteme H, Felth J, Fryknäs M, Fayad W et al (2011) Novel activity of acriflavine against colorectal cancer tumor cells. Cancer Sci 102:2206–2213. https://doi.org/10.1111/j.1349-7006.2011.02097.x

    Article  CAS  PubMed  Google Scholar 

  14. Ben Abdelkrim S, Rammeh S, Ziadi S, Tlili T, Jaidane M, Mokni M (2014) Expression of topoisomerase II alpha, ki67, and p53 in primary non-muscle-invasive urothelial bladder carcinoma. J Immunoassay Immunochem 35:358–367. https://doi.org/10.1080/15321819.2014.899254

    Article  CAS  PubMed  Google Scholar 

  15. Yu Z, Xu Q, Wang G, Rowe M, Driskell C, Xie Q et al (2019) DNA topoisomerase IIα and RAD21 cohesin complex component are predicted as potential therapeutic targets in bladder cancer. Oncol Lett 18:518–528. https://doi.org/10.3892/ol.2019.10365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aumayr K, Klatte T, Neudert B, Birner P, Shariat S, Schmidinger M et al (2018) HER2 and TOP2A gene amplification and protein expression in upper tract urothelial carcinomas. Pathol Oncol Res 24(3):575–581. https://doi.org/10.1007/s12253-017-0260-0

    Article  CAS  PubMed  Google Scholar 

  17. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38:675–678. https://doi.org/10.1038/s41587-020-0546-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mengual L, Burset M, Ars E, Lozano JJ, Villavicencio H, Ribal MJ et al (2009) DNA microarray expression profiling of bladder cancer allows identification of noninvasive diagnostic markers. J Urol 182:741–748. https://doi.org/10.1016/j.juro.2009.03.084

    Article  CAS  PubMed  Google Scholar 

  19. Kim YJ, Yoon HY, Kim JS, Kang HW, Min BD, Kim SK et al (2013) HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer 133(5):1135–1142. https://doi.org/10.1002/ijc.28121

    Article  CAS  PubMed  Google Scholar 

  20. Ali Y, Abd Hamid S (2016) Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumour Biol 37:47–55. https://doi.org/10.1007/s13277-015-4270-9

    Article  CAS  PubMed  Google Scholar 

  21. Lee C-J, Yue C-H, Lin Y-J, Lin Y-Y, Kao S-H, Liu J-Y et al (2014) Antitumor activity of acriflavine in lung adenocarcinoma cell line A549. Anticancer Res 34:6467–6472

    CAS  PubMed  Google Scholar 

  22. Fan J, Yang X, Bi Z (2014) Acriflavine suppresses the growth of human osteosarcoma cells through apoptosis and autophagy. Tumour Biol 35:9571–9576. https://doi.org/10.1007/s13277-014-2156-x

    Article  CAS  PubMed  Google Scholar 

  23. Eftekhar E, Jaberie H, Naghibalhossaini F (2016) Carcinoembryonic antigen expression and resistance to radiation and 5-fluorouracil-induced apoptosis and autophagy. Int J Mol Cell Med 5:80–89

    PubMed  PubMed Central  Google Scholar 

  24. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71–85

    Google Scholar 

  25. Shay JE, Imtiyaz HZ, Sivanand S, Durham AC, Skuli N, Hsu S et al (2014) Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis 35:1067–1077

    Article  CAS  Google Scholar 

  26. Lim M-J, Ahn J-Y, Han Y, Yu C-h, Kim M-H, Lim D-S et al (2012) Acriflavine enhances radiosensitivity of colon cancer cells through endoplasmic reticulum stress-mediated apoptosis. Int J Biochem Cell Biol 44:1214–1222. https://doi.org/10.1016/j.biocel.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Zhang Y (2015) Bladder Cancer and Genetic Mutations. Cell Biochem Biophys 73:65–69. https://doi.org/10.1007/s12013-015-0574-z

    Article  CAS  PubMed  Google Scholar 

  28. Liu D, Song H, Xu Y (2010) A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29:949–956. https://doi.org/10.1038/onc.2009.376

    Article  CAS  PubMed  Google Scholar 

  29. Pagliaro LC, Keyhani A, Liu B, Perrotte P, Wilson D, Dinney CP (2003) Adenoviral p53 gene transfer in human bladder cancer cell lines: cytotoxicity and synergy with cisplatin. Urol Oncol 21:456–462. https://doi.org/10.1016/s1078-1439(03)00032-2

    Article  CAS  PubMed  Google Scholar 

  30. Hientz K, Mohr A, Bhakta-Guha D, Efferth T (2017) The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8:8921–8946. https://doi.org/10.18632/oncotarget.13475

    Article  PubMed  Google Scholar 

  31. Rieger K, Little A, Swart J, Kastrinakis W, Fitzgerald J, Hess D et al (1995) Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression. Br J Cancer 72:683–690. https://doi.org/10.1038/bjc.1995.394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grimm M-O, Jürgens B, Schulz W, Decken K, Makri D, Schmitz-Dräger B (1995) Inactivation of tumor suppressor genes and deregulation of the c-myc gene in urothelial cancer cell lines. Urol Res 23:293–300. https://doi.org/10.1007/BF00300017

    Article  CAS  PubMed  Google Scholar 

  33. Theodoropoulos VE, Lazaris AC, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I et al (2004) Hypoxia-inducible factor 1α expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 46:200–208. https://doi.org/10.1016/j.eururo.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  34. Lv X, Li J, Zhang C, Hu T, Li S, He S et al (2017) The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis. https://doi.org/10.1016/j.gendis.2016.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Buzun K, Bielawska A, Bielawski K, Gornowicz A (2020) DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem 35(1):1781–1799. https://doi.org/10.1080/14756366.2020.1821676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim EJ, Lee YS, Kim YJ, Kim MJ, Ha YS, Jeong P et al (2010) Clinical implications and prognostic values of topoisomerase-II alpha expression in primary non–muscle-invasive bladder cancer. Urology 75:1516. https://doi.org/10.1016/j.urology.2009.08.055

    Article  PubMed  Google Scholar 

  37. Mangraviti A, Raghavan T, Volpin F, Skuli N, Gullotti D, Zhou J et al (2017) HIF-1α-targeting acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-14990-w

    Article  CAS  Google Scholar 

  38. Heestand GM, Schwaederle M, Gatalica Z, Arguello D, Kurzrock R (2017) Topoisomerase expression and amplification in solid tumours: analysis of 24,262 patients. Eur J Cancer 83:80–87. https://doi.org/10.1016/j.ejca.2017.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gazzaniga P, Silvestri I, Gradilone A, Scarpa S, Morrone S, Gandini O et al (2007) Gemcitabine-induced apoptosis in 5637 cell line: an in-vitro model for high-risk superficial bladder cancer. Anticancer Drugs 18:179–185. https://doi.org/10.1097/CAD.0b013e328010ef47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Deputy of Research, Hormozgan University of Medical Sciences, Bandar Abbas, Iran (Grant No. 91-F-4).

Author information

Authors and Affiliations

Authors

Contributions

PZ performed molecular laboratory tests; SK, MH performed molecular laboratory tests and prepared the manuscript. YA, HN analyzed and interpreted the patient data. EE designed the protocol and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ebrahim Eftekhar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, P., Koochakkhani, S., Hassanzadeh, M. et al. Downregulation of topoisomerase 1 and 2 with acriflavine sensitizes bladder cancer cells to cisplatin-based chemotherapy. Mol Biol Rep 49, 2755–2763 (2022). https://doi.org/10.1007/s11033-021-07087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07087-1

Keywords

Navigation