Skip to main content
Log in

Comparative transcriptome analyses reveal genes related to pigmentation in the petals of a flower color variation cultivar of Rhododendron obtusum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Rhododendron is an important woody ornamental plant, and breeding varieties with different colors is a key research goal. Although there have been a few reports on the molecular mechanisms of flower colors and color patterning in Rhododendron, it is still largely unknown what factors regulate flower pigmentation in Rhododendron.

Methods and results

In this study, the flower color variation cultivar ‘Yanzhi Mi’ and the wild-type (WT) cultivar ‘Dayuanyangjin’ were used as research objects, and the pigments and transcriptomes of their petals during five flower development stages were analyzed and compared. The results showed that derivatives of cyanidin, peonidin and pelargonidin might be responsible for the pink color of mutant petals and that the S2 stage was the key stage of flower color formation. In total, 412,910 transcripts and 2780 differentially expressed genes (DEGs) were identified in pairwise comparisons of WT and mutant petals. GO and KEGG enrichment analyses of the DEGs showed that ‘DNA-binding transcription factor activity’, ‘Flavonoid biosynthesis’ and ‘Phenylpropanoid biosynthesis’ were more active in mutant petals. Early anthocyanin pathway candidate DEGs (CHS3-CHS6, CHI, F3Hs and F3′H) were significantly correlated and were more highly expressed in mutant petals than in WT petals in the S2 stage. An R2R3-MYB unigene (TRINITY_DN55156_c1_g2) was upregulated approximately 10.5-fold in ‘Yanzhi Mi’ petals relative to ‘Dayuanyangjin’ petals in the S2 stage, and an R2R3-MYB unigene (TRINITY_DN59015_c3_g2) that was significantly downregulated in ‘Yanzhi Mi’ petals in the S2 stage was found to be closely related to Tca MYB112 in cacao.

Conclusions

Taken together, the results of the present study could shed light on the molecular basis of anthocyanin biosynthesis in two Rhododendron obtusum cultivars and may provide a genetic resource for breeding varieties with different flower colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Transcriptome raw sequence data in this study are available in SRA at NCBI with the BioSample accession number of SAMN17817099; data pertaining to the study have been included in this manuscript and supplementary materials. A pre-print of the paper exists on Research Square (https://www.researchsquare.com/article/rs-263287/v1).

References

  1. Meijón M, Cañal MJ, Valledo L, Rodríguez R, Feito I (2011) Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. Physiol Plant 141(3):276–288. https://doi.org/10.1111/j.1399-3054.2010.01430.x

    Article  CAS  PubMed  Google Scholar 

  2. Ureshino K, Nakayama M, Miyajima I (2016) Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in azalea petals. Euphytica 207:401–417. https://doi.org/10.1007/s10681-015-1557-2

    Article  CAS  Google Scholar 

  3. Cooper-Driver GA (2001) Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochemistry 56:229–236. https://doi.org/10.1016/S0031-9422(00)00455-6

    Article  CAS  PubMed  Google Scholar 

  4. Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N (2009) Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Sci Horti 122(4):594–602. https://doi.org/10.1016/j.scienta.2009.06.027

    Article  CAS  Google Scholar 

  5. Harborne JB (1986) Flavonoid patterns and phytogeography: the genus Rhododendron section Vireya. Phytochemistry 25(7):1641–1643. https://doi.org/10.1016/S0031-9422(00)81226-1

    Article  CAS  Google Scholar 

  6. Chosson E, Chaboud A, Chulia AJ, Raynaud J (1998) Dihydroflflavonol glycosides from Rhododendron ferrugineum. Phytochemistry 49(5):1431–1433. https://doi.org/10.1016/S0031-9422(98)00080-6

    Article  CAS  Google Scholar 

  7. Mok SY, Lee S (2013) Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem 136(2):969–974. https://doi.org/10.1016/j.foodchem.2012.08.091

    Article  CAS  PubMed  Google Scholar 

  8. Du H, Lai L, Wang F, Sun W, Zhang L, Li X et al (2018) Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits. Plant Biol 20(1):121–129. https://doi.org/10.1111/plb.12649

    Article  CAS  PubMed  Google Scholar 

  9. Mizuta D, Nakatsuka A, Miyajima I, Ban T, Kobayashi N (2010) Pigment composition patterns and expression analysis of flavonoid biosynthesis genes in the petals of evergreen azalea Oomurasaki and its red flower sport. Plant Breeding 129:558–562. https://doi.org/10.1111/j.1439-0523.2009.01714.x

    Article  CAS  Google Scholar 

  10. Hang NTT, Miyajima I, Ureshino K, Kobayashi N, Kurashige Y, Matsui T et al (2011) Anthocyanins of wild Rhododendron simsii Planch. Flowers in Vietnam and Japan. J Jpn Soc Hortic Sci 80:206–213. https://doi.org/10.2503/jjshs1.80.206

    Article  Google Scholar 

  11. Park CH, Yeo HJ, Kim NS, Park YE, Park SY, Kim JK et al (2018) Metabolomic profiling of the white, violet, and red flowers of Rhododendron schlippenbachii Maxim. Molecules 23(4):827. https://doi.org/10.3390/molecules23040827

    Article  CAS  PubMed Central  Google Scholar 

  12. Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A (2017) Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol 58:1431–1441. https://doi.org/10.1093/pcp/pcx075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naing AH, Kim CK (2018) Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Mol Biol 98:1–18. https://doi.org/10.1007/s11103-018-0771-4

    Article  CAS  PubMed  Google Scholar 

  14. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229. https://doi.org/10.1016/j.plantsci.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  15. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. https://doi.org/10.1016/j.tplants.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  16. Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34. https://doi.org/10.1016/j.plaphy.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

    Article  CAS  PubMed  Google Scholar 

  18. Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185. https://doi.org/10.1016/j.tplants.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Lai B, Li XJ, Hu B, Qin YH, Huang XM (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE 9:e86293. https://doi.org/10.1371/journal.pone.0086293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin W, Wang H, Li M, Wang J, Yang Y (2016) The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol J 14:2120–2133. https://doi.org/10.1111/pbi.12568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schepper D, Debergh P, Bocktaele V, Loose D (2001) Molecular characterisation of flower colour genes in azalea sports (Rhododendron simsii hybrids). Acta Hortic 552:143–150. https://doi.org/10.17660/ActaHortic.2001.552.15

    Article  Google Scholar 

  22. De KE, Lootens P, Van BE, De RJ (2013) Image analysis for QTL mapping of flower colour and leaf characteristics in pot azalea (Rhododendron simsii hybrids). Euphytica 189:445–460. https://doi.org/10.1007/s10681-012-0809-7

    Article  Google Scholar 

  23. Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Horti 118(4):314–320. https://doi.org/10.1016/j.scienta.2008.06.016

    Article  CAS  Google Scholar 

  24. Monica GM, Rodriguez-Saona LE (1999) Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization. J Agric Food Chem 47:4657–4664

    Article  Google Scholar 

  25. Liu SS, Chen J, Li SC, Zeng X, Meng ZX, Guo SX (2015) Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). Int J Mol Sci 16:30190–30203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grabherr MG, Haas B, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinfor 12:323–323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  28. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  30. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322. https://doi.org/10.1093/nar/gkr483

    Article  CAS  Google Scholar 

  33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  34. Xiao Z, Sun X, Liu X, Li C, He L, Chen S et al (2016) Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don. Front Plant Sci 7:1547. https://doi.org/10.3389/fpls.2016.01547

    Article  PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  36. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang PF et al (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 135:745–755. https://doi.org/10.1104/pp.104.040071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pillet J, Yu HW, Chambers AH, Whitaker VM, Folta KM (2015) Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria×ananassa) fruits. J Exp Bot 66(15):4455–4467. https://doi.org/10.1093/jxb/erv205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin DH, Choi MG, Bang G, Cho M, Choi SB, Choi G et al (2013) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547. https://doi.org/10.1016/j.febslet.2013.03.037

    Article  CAS  PubMed  Google Scholar 

  39. Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Iii DL et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14(6):R53. https://doi.org/10.1186/gb-2013-14-6-r53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Zhang LY, Wang SL, Niu XY (2016) Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet. Plant Physiol Biochem 104:250–256. https://doi.org/10.1016/j.plaphy.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki N, Nishizaki Y, Uchida Y, Wakamatsu E, Umemoto N, Momose M et al (2012) Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol 29:223–227. https://doi.org/10.5511/plantbiotechnology.12.0120a

    Article  CAS  Google Scholar 

  42. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. https://doi.org/10.1104/pp.126.2.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mol J, Grotewold E, Koes R (1998) How gens paint flowers and seeds. Trends Plant Sci 6:212–217

    Article  Google Scholar 

  44. Schwinn K, Venail J, Shang YJ, Mackay S, Alm V, Butelli E et al (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851. https://doi.org/10.1105/tpc.105.039255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Albert NW, Davies KM, Lewis DH, Zhang HB, Montefifiori M, Brendolise C et al (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980. https://doi.org/10.1105/tpc.113.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH (2015) Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiol 168:175–191. https://doi.org/10.1104/pp.114.254599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li CH, Qiu J, Ding L, Huang MZ, Huang SR, Yang GS et al (2017) Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in dendrobium hybrids petals. Plant Physiol Biochem 112:335–345. https://doi.org/10.1016/j.plaphy.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  48. Nuraini L, Ando Y, Kawai K, Tatsuzawa F, Tanaka K, Ochiai M et al (2020) Anthocyanin regulatory and structural genes associated with violet fower color of Matthiola incana. Planta 251(3):61. https://doi.org/10.1007/s00425-020-03351-z

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida K, Ma D, Constabel CP (2015) The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol 167:693–710. https://doi.org/10.1104/pp.114.253674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wan S, Li C, Ma X, Luo K (2017) PtrMYb57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep 36:1263–1276. https://doi.org/10.1007/s00299-017-2151-y

    Article  CAS  PubMed  Google Scholar 

  51. Zhou H, Peng Q, Zhao J, Owiti A, Ren F (2016) Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front Plant Sci 7:1557. https://doi.org/10.3389/fpls.2016.01557

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu H, Wang N, Liu J, Qu C, Wang Y (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdBHLH33 genes. Plant Mol Biol 94:149–165. https://doi.org/10.1007/s11103-017-0601-0

    Article  CAS  PubMed  Google Scholar 

  53. Xu H, Yang G, Zhang J, Wang Y, Zhang T (2018) Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochem Biophys Res Commun 500:405–410. https://doi.org/10.1016/j.bbrc.2018.04.088

    Article  CAS  PubMed  Google Scholar 

  54. Anwar M, Wang G, Wu J, Waheed S, Allan AC (2018) Ectopic overexpression of a novel R2R3-MYB, NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in tobacco. Molecules 23:781. https://doi.org/10.3390/molecules23040781

    Article  CAS  PubMed Central  Google Scholar 

  55. Xiang L, Liu X, Li H, Yin X, Grierson D, Li F et al (2019) CmMYB7, an R3MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. J Exp Bot 70(12):3111–3123. https://doi.org/10.1007/s00299-019-02391-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20190271), Jiangsu Provincial Agricultural Science and Technology Innovation Project (CX (20)2030), Special Fund for Forestry Development of Jiangsu Province (sczh [2020] No.26) and Special Fund for Jiangsu Provincial Forestry Innovation and Promotion (LYKJ[2021]06).

Author information

Authors and Affiliations

Authors

Contributions

JS, CL, LH and XL designed the experiments; XS, HZ, ZX handled experimental material; XS, ZX, HG and ZG were responsible for software and data processing; LH and XS writing original draft preparation; XS and ZG were responsible for review, editing and visualization. LH, HZ and CL were responsible for funding acquisition. XS and LH contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chang Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This manuscript does not contain any studies conducted on human or animal subjects.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 826 kb)

Supplementary file2 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., He, L., Guo, Z. et al. Comparative transcriptome analyses reveal genes related to pigmentation in the petals of a flower color variation cultivar of Rhododendron obtusum. Mol Biol Rep 49, 2641–2653 (2022). https://doi.org/10.1007/s11033-021-07070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07070-w

Keywords

Navigation