Skip to main content
Log in

Identification of the ergC gene involved in polyene drug sensitivity in the Mucorales species Phycomyces blakesleeanus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

A strain of Phycomyces blakesleeanus (Mucorales, Mucoromycota) that was previously isolated after ultraviolet mutagenesis has altered responses to polyene antifungal drugs, sterol profiles, and phototropism of its sporangia. In this study, the genetic basis for these changes was sought.

Methods and Results

Two base pair substitutions were identified in the mutant within a P. blakelesleeanus gene that is homologous to others characterized from fungi, such as the Saccharomyces cerevisiae ERG3 gene, encoding sterol Δ5,6-desaturase. The polyene resistance and growth reduction phenotypes co-segregated with mutations in the gene in genetic crosses. The P. blakelesleeanus wild type ergC gene complemented a S. cerevisiae deletion strain of ERG3.

Conclusions

This gene discovery may contribute towards better antifungal use in treating mucormycoses diseases caused by related species in the order Mucorales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The DNA sequence of the wild type copy of ergC is available as GenBank accession MW506865. All other data are available in the manuscript or associated supplemental material.

Code availability

Not applicable.

References

  1. Cerdá-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rev 25:503–512

    Article  Google Scholar 

  2. Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP et al (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA 103:4546–4551

    Article  CAS  Google Scholar 

  3. Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM et al (2009) Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci USA 106:7095–7100

    Article  CAS  Google Scholar 

  4. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM et al (2016) Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26:1577–1584

    Article  CAS  Google Scholar 

  5. Polaino S, Villalobos-Escobedo VM, Shakya VPS, Miralles-Durán A, Chaudhary S, Sanz C et al (2017) A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci Rep 7:44790

    Article  CAS  Google Scholar 

  6. Barrero AF, Oltra JE, Robinson J, Burke PV, Jiménez D, Oliver E (2002) Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. Steroids 67:403–409

    Article  CAS  Google Scholar 

  7. Carolus H, Pierson S, Lagrou K, Van Dijck P (2020) Amphotericin B and other polyenes—discovery, clinical use, mode of action and drug resistance. J Fungi 6:321

    Article  CAS  Google Scholar 

  8. Arthington BA, Bennett LG, Skatrud PL, Guynn CJ, Barbuch RJ, Ulbright CE et al (1991) Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 102:39–44

    Article  CAS  Google Scholar 

  9. Arthington BA, Hoskins J, Skatrud PL, Bard M (1991) Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase. Gene 107:173–174

    Article  CAS  Google Scholar 

  10. Iwaki T, Iefuji H, Hiraga Y, Hosomi A, Morita T, Giga-Hama Y et al (2008) Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology 154:830–841

    Article  CAS  Google Scholar 

  11. Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AGS et al (2010) Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 54:4527–4533

    Article  CAS  Google Scholar 

  12. Vale-Silva LA, Coste AT, Ischer F, Parker JE, Kelly SL, Pinto E et al (2012) Azole resistance by loss of function of the sterol Δ5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob Agents Chemother 56:1960–1968

    Article  CAS  Google Scholar 

  13. Rybak JM, Dickens CM, Parker JE, Caudle KE, Manigaba K, Whaley SG et al (2017) Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis. Antimicrob Agents Chemother 61:e00651-e717

    Article  CAS  Google Scholar 

  14. Pinjon E, Moran GP, Jackson CJ, Kelly SL, Sanglard D, Coleman DC et al (2003) Molecular mechanisms of itraconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 47:2424–2437

    Article  CAS  Google Scholar 

  15. Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwon-Chung KJ et al (1995) Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 39:2708–2717

    Article  CAS  Google Scholar 

  16. Miyazaki Y, Geber A, Miyazaki H, Falconer D, Parkinson T, Hitchcock C et al (1999) Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene 236:43–51

    Article  CAS  Google Scholar 

  17. Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S et al (2016) Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother 57:3182–3193

    Article  Google Scholar 

  18. Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA et al (2021) Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. mBio 12:e03333-20

    Article  Google Scholar 

  19. Yun Y, Yin D, Dawood DH, Liu X, Chen Y, Ma Z (2014) Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum. Fungal Genet Biol 68:60–70

    Article  CAS  Google Scholar 

  20. Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Buitrago MJ, Lopez JF, Grimalt JO et al (2006) Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother 50:453–460

    Article  CAS  Google Scholar 

  21. Ianiri G, Wright SAI, Castoria R, Idnurm A (2011) Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 48:685–695

    Article  CAS  Google Scholar 

  22. Venegas M, Barahona S, González AM, Sepúlveda D, Zúñiga GE, Baeza M et al (2020) Phenotypic analysis of mutants of ergosterol biosynthesis Genes (ERG3 and ERG4) in the red yeast Xanthophyllomyces dendrorhous. Front Microbiol 11:1312

    Article  Google Scholar 

  23. Xia Z, Yu H, Wang C, Ding X, Zhang D, Tan X et al (2020) Genomic and transcriptome identification of fluconazole-resistant genes for Trichosporon asahii. Med Mycol 58:393–400

    Article  CAS  Google Scholar 

  24. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742

    Article  CAS  Google Scholar 

  25. Dannaoui E (2017) Antifungal resistance in mucorales. Int J Antimicrob Agents 50:617–621

    Article  CAS  Google Scholar 

  26. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B et al (2019) Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 19:e405–e421

    Article  CAS  Google Scholar 

  27. Alvarez MI, Eslava AP (1983) Isogenic strains of Phycomyces blakesleeanus suitable for genetic analysis. Genetics 105:873–879

    Article  CAS  Google Scholar 

  28. Chaudhary S, Polaino S, Shakya VPS, Idnurm A (2013) A new genetic map for the zygomycete fungus Phycomyces blakesleeanus. PLoS One 8:e58931

    Article  CAS  Google Scholar 

  29. Pitkin JW, Panaccione DG, Walton JD (1996) A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142:1557–1565

    Article  CAS  Google Scholar 

  30. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  Google Scholar 

  31. Obraztsova IN, Prados N, Holzmann K, Avalos J, Cerdá-Olmedo E (2004) Genetic damage following introduction of DNA in Phycomyces. Fungal Genet Biol 41:168–180

    Article  CAS  Google Scholar 

  32. Idnurm A (2018) Mystique of Phycomyces blakesleeanus is a peculiar mitochondrial genetic element that is highly variable in DNA sequence while subjected to strong negative selection. J Genet 97:1195–1204

    Article  CAS  Google Scholar 

  33. Muszewska A, Pawłowska J, Krzyściak P (2014) Biology, systematics, and clinical manifestations of Zygomycota infections. Eur J Clin Microbiol Infect Dis 33:1273–1287

    Article  CAS  Google Scholar 

  34. Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236–301

    Article  CAS  Google Scholar 

  35. Caramalho R, Tyndall JDA, Monk BC, Larentis T, Lass-Flörl C, Lackner M (2017) Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci Rep 7:15898

    Article  Google Scholar 

  36. Tagua VG, Pausch M, Eckel M, Gutiérrez G, Miralles-Durán A, Sanz C et al (2015) Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci USA 112:15130–15135

    Article  CAS  Google Scholar 

  37. Verma S, Idnurm A (2013) Uve1 endonuclease is regulated by White collar to protect Cryptococcus neoformans from UV damage. PLoS Genet 9:e1003769

    Article  CAS  Google Scholar 

  38. Kochenova OV, Daee DL, Mertz TM, Shcherbakova PV (2015) DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA. PLoS Genet 11:e1005110

    Article  Google Scholar 

  39. Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S et al (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics 4:662–672

    Article  CAS  Google Scholar 

  40. Orejas M, Peláez MI, Alvarez MI, Eslava AP (1987) A genetic map of Phycomyces blakesleeanus. Mol Gen Genet 210:69–76

    Article  CAS  Google Scholar 

Download references

Funding

AI was an Australian Research Council (ARC) Future Fellow, and additional research on fungicide resistance was supported by an ARC Linkage project (LP170100548).

Author information

Authors and Affiliations

Authors

Contributions

AI designed the research study and organized the project. AI and MX performed the research and analysis of the data. AI wrote the first draft of the manuscript and prepared the figures and tables, with subsequent input and editing from MX. Both authors approved the final version of the manuscript and submission of the manuscript.

Corresponding author

Correspondence to Alexander Idnurm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of or competing interests in publishing this research.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idnurm, A., Xu, M. Identification of the ergC gene involved in polyene drug sensitivity in the Mucorales species Phycomyces blakesleeanus. Mol Biol Rep 49, 981–987 (2022). https://doi.org/10.1007/s11033-021-06917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06917-6

Keywords

Navigation