Skip to main content

Heterologous Expression of Candida Antifungal Target Genes in the Model Organism Saccharomyces cerevisiae

  • Protocol
  • First Online:
Antifungal Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2658))

Abstract

Understanding how a gene variant may influence antifungal resistance, or other phenotypic characteristics, is an important step in determining or dissecting resistance mechanisms. The influence of specific genes or gene alleles on a phenotype can initially be assessed within the model organism, Saccharomyces cerevisiae. S. cerevisiae exhibits efficient rates of homologous recombination making it amendable for heterologous expression and represents a susceptible organism that can be used to determine changes in antifungal susceptibilities. Many groups have developed different methodologies for the cloning, expression, and screening processes. In this chapter, we present straightforward methodology that utilizes gap-repair cloning to express a plasmid-borne copy of Candida auris ERG11 within S. cerevisiae. Multiple alleles can be compared in order to determine how specific alterations influence triazole susceptibility. Primer design, gap-repair co-transformation, and colony PCR screening are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balkan C, Ercan I, Isik E, Sahin Akdeniz E, Balcioglu O, Kodedova M, Zimmermannova O, Dundar M, Sychrova H, Koc A (2019) Genomewide elucidation of drug resistance mechanisms for systemically used antifungal drugs amphotericin B, Caspofungin, and Voriconazole in the budding yeast. Antimicrob Agents Chemother 63(9). https://doi.org/10.1128/AAC.02268-18

  2. Nobbs AH, Vickerman MM, Jenkinson HF (2010) Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryot Cell 9(10):1622–1634. https://doi.org/10.1128/EC.00103-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keniya MV, Cannon RD, Nguyen A, Tyndall JD, Monk BC (2013) Heterologous expression of Candida albicans Pma1p in Saccharomyces cerevisiae. FEMS Yeast Res 13(3):302–311. https://doi.org/10.1111/1567-1364.12035

    Article  CAS  PubMed  Google Scholar 

  4. Keniya MV, Ruma YN, Tyndall JDA, Monk BC (2018) Heterologous expression of full-length Lanosterol 14alpha-demethylases of prominent fungal pathogens Candida albicans and Candida glabrata provides tools for antifungal discovery. Antimicrob Agents Chemother 62(11). https://doi.org/10.1128/AAC.01131-18

  5. Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Yasmine W, Matthiesen R, Kaniki SEK, Sorensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Sorensen JL (2020) Heterologous expression of the Core genes in the complex Fusarubin gene cluster of fusarium Solani. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207601

  6. Morio F, Loge C, Besse B, Hennequin C, Le Pape P (2010) Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66(4):373–384. https://doi.org/10.1016/j.diagmicrobio.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  7. Flowers SA, Colon B, Whaley SG, Schuler MA, Rogers PD (2015) Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 59(1):450–460. https://doi.org/10.1128/AAC.03470-14

    Article  CAS  PubMed  Google Scholar 

  8. Healey KR, Kordalewska M, Jimenez Ortigosa C, Singh A, Berrio I, Chowdhary A, Perlin DS (2018) Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother 62(10). https://doi.org/10.1128/AAC.01427-18

  9. Wüllner D, Gesper M, Haupt A, Liang X, Zhou P, Dietze P, Narberhaus F, Bandow JE (2022) Adaptive Responses of Pseudomonas aeruginosa to Treatment with Antibiotics. Antimicrob Agents Chemoter 66(1): e01624–21. https://doi.org/10.1128/AAC.01624-21

  10. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64(2):134–140. https://doi.org/10.1093/cid/ciw691

    Article  CAS  PubMed  Google Scholar 

  11. Singh A, Singh PK, de Groot T, Kumar A, Mathur P, Tarai B, Sachdeva N, Upadhyaya G, Sarma S, Meis JF, Chowdhary A (2019) Emergence of clonal fluconazole-resistant Candida parapsilosis clinical isolates in a multicentre laboratory-based surveillance study in India. J Antimicrob Chemother 74(5):1260–1268. https://doi.org/10.1093/jac/dkz029

    Article  CAS  PubMed  Google Scholar 

  12. Gomes AC, Miranda I, Silva RM, Moura GR, Thomas B, Akoulitchev A, Santos MA (2007) A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol 8(10):R206. gb-2007-8-10-r206 [pii]. 12.1186/gb-2007-8-10-r206

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bennett RJ (2010) Coming of age--sexual reproduction in Candida species. PLoS Pathog 6(12):e1001155. https://doi.org/10.1371/journal.ppat.1001155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson ME, Edlind TD (2012) Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukaryot Cell 11(7):952–960. https://doi.org/10.1128/EC.00082-12. EC.00082-12 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from William Paterson University Department of Biology and the College of Science and Health’s Center for Research to K.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelley R. Healey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Healey, K.R., Singh, A. (2023). Heterologous Expression of Candida Antifungal Target Genes in the Model Organism Saccharomyces cerevisiae. In: Krysan, D.J., Moye-Rowley, W.S. (eds) Antifungal Drug Resistance. Methods in Molecular Biology, vol 2658. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3155-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3155-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3154-6

  • Online ISBN: 978-1-0716-3155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics