Skip to main content

Advertisement

Log in

An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chronic inflammation is a major factor in tumor growth and progression. Cancer cells secrete C-X-C chemokine ligand 8 (CXCL8) along with its receptor C-X-C chemokine receptor 1 (CXCR1) and chemokine receptor 2 (CXCR2). It plays a significant role in the activation and trafficking of inflammatory mediators, tumor proliferation and interferes in breast cancer development by controlling cell adhesion, proliferation, migration, and metastasis. This axis also plays a significant role in driving different cancers and melanomas, including breast cancer progression, by controlling stem cell masses. Few small-molecule CXCR1/2 inhibitors and CXCL8 releasing inhibitors have been identified in the past two decades that bind these receptors in their inactive forms and blocks their signaling as well as the biological activities associated with inflammation. Inhibitors of certain inflammatory molecules are projected to be more efficient in different inflammatory diseases. Preclinical trials indicate that patients may be benefitted from combined treatment with targeted drugs, chemotherapies, and immunotherapies. Thus, targeting the CXCL8-CXCR1/2 signaling axis in breast cancer could be a promising approach for its therapeutics. This review examines the roles of the CXCL8-CXCR1/2 signaling axis and how it is implicated in the tumor microenvironment in breast cancer. In addition, we also discuss the potential role of the CXCL8-CXCR1/2 axis in targeted therapeutics for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2016 Elsevier). CXCL8 interacts with G protein-coupled receptors (GPCRs), such as CXCR1 or CXCR2, leading to G protein activation at the cellular level. Heterotrimeric Ga and bg subunits activate the major effectors PLC and PI3K to induce phosphorylation of PKC and Akt, respectively. The two signaling pathways have been shown to activate transcription factors involved in tumor cell survival, angiogenesis, and migration. CXCL8 also promotes cell proliferation, survival, motility, and invasion by activating non-receptor tyrosine kinases (e.g., Src and FAK) and members of the RhoGTPase family. Cell proliferation and survival are aided by an activated Raf-1/MAP/Erk signaling cascade. Dashed arrows show unconfirmed pathways implicated in the CXCL8 signaling axis

Similar content being viewed by others

References

  1. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588. https://doi.org/10.7150/thno.15625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Le Y, Zhou Y, Iribarren P, Wang J (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1(2):95–104

    CAS  PubMed  Google Scholar 

  3. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741. https://doi.org/10.1158/1078-0432.CCR-07-4843

    Article  CAS  PubMed  Google Scholar 

  4. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36(5):705–716. https://doi.org/10.1016/j.immuni.2012.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X, Wu K (2016) The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 31:61–71. https://doi.org/10.1016/j.cytogfr.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruffini PA (2019) The CXCL8-CXCR1/2 axis as a therapeutic target in breast cancer stem-like cells. Front Oncol 9:40. https://doi.org/10.3389/fonc.2019.00040

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A (2005) The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett 217(1):73–86. https://doi.org/10.1016/j.canlet.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  9. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313. https://doi.org/10.1158/0008-5472.CAN-08-2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497. https://doi.org/10.1172/JCI39397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and-independent mechanisms. Clin Cancer Res 19(3):643–656. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  12. Schröder J, Mrowietz U, Morita E, Christophers E (1987) Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 139(10):3474–3483

    PubMed  Google Scholar 

  13. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7(2):122–133. https://doi.org/10.1215/S1152851704001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM et al (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 88(2):502–506. https://doi.org/10.1073/pnas.88.2.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nasser MW, Raghuwanshi SK, Grant DJ, Jala VR, Rajarathnam K, Richardson RM (2009) Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J Immunol 183(5):3425–3432. https://doi.org/10.4049/jimmunol.0900305

    Article  CAS  PubMed  Google Scholar 

  16. Joseph PRB, Rajarathnam K (2015) Solution NMR characterization of WT CXCL 8 monomer and dimer binding to CXCR 1 N-terminal domain. Protein Sci 24(1):81–92

    Article  CAS  Google Scholar 

  17. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253(5025):1278–1280. https://doi.org/10.1126/science.1840701

    Article  CAS  PubMed  Google Scholar 

  18. Kunsch C, Rosen CA (1993) NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13(10):6137–6146. https://doi.org/10.1128/mcb.13.10.6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM, Guha S (2009) CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer 125(5):1027–1037. https://doi.org/10.1002/ijc.24383

    Article  CAS  PubMed  Google Scholar 

  20. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB, Lokeshwar BL (2007) Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 67(14):6854–6862. https://doi.org/10.1158/0008-5472.CAN-07-1162

    Article  CAS  PubMed  Google Scholar 

  21. Matsushima K, Baldwin ET, Mukaida N (1992) Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines. Chem Immunol 51:236–265. https://doi.org/10.1159/000319091

    Article  CAS  PubMed  Google Scholar 

  22. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783. https://doi.org/10.1038/nature11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Modi WS, Dean M, Seuanez HN, Mukaida N, Matsushima K, O’Brien SJ (1990) Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum Genet 84(2):185–187. https://doi.org/10.1007/BF00208938

    Article  CAS  PubMed  Google Scholar 

  24. Ahuja SK, Özçelik T, Milatovitch A, Francke U, Murphy PM (1992) Molecular evolution of the human interleukin-8 receptor gene cluster. Nat Genet 2(1):31–36. https://doi.org/10.1038/ng0992-31

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M (2002) Multiple control of interleukin-8 gene expression. J Leukoc Biol 72(5):847–855. https://doi.org/10.1189/jlb.72.5.847

    Article  CAS  PubMed  Google Scholar 

  26. Wald O, Shapira OM, Izhar U (2013) CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics 3(1):26–33. https://doi.org/10.7150/thno.4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Podolin PL, Bolognese BJ, Foley JJ, Schmidt DB, Buckley PT, Widdowson KL, Jin Q, White JR, Lee JM, Goodman RB, Hagen TR, Kajikawa O, Marshall LA, Hay DW, Sarau HM (2002) A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit. J Immunol 169(11):6435–6444. https://doi.org/10.4049/jimmunol.169.11.6435

    Article  CAS  PubMed  Google Scholar 

  28. Catusse J, Liotard A, Loillier B, Pruneau D, Paquet JL (2003) Characterization of the molecular interactions of interleukin-8 (CXCL8), growth related oncogen alpha (CXCL1) and a non-peptide antagonist (SB 225002) with the human CXCR2. Biochem Pharmacol 65(5):813–821. https://doi.org/10.1016/s0006-2952(02)01619-2

    Article  CAS  PubMed  Google Scholar 

  29. Prado GN, Suetomi K, Shumate D, Maxwell C, Ravindran A, Rajarathnam K, Navarro J (2007) Chemokine signaling specificity: essential role for the N-terminal domain of chemokine receptors. Biochemistry 46(31):8961–8968. https://doi.org/10.1021/bi7004043

    Article  CAS  PubMed  Google Scholar 

  30. Ahuja SK, Lee JC, Murphy PM (1996) CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B: determinants of high affinity binding and receptor activation are distinct. J Biol Chem 271(1):225–232. https://doi.org/10.1074/jbc.271.1.225

    Article  CAS  PubMed  Google Scholar 

  31. Bendrik C, Dabrosin C (2009) Estradiol increases IL-8 secretion of normal human breast tissue and breast cancer in vivo. J Immunol 182(1):371–378

    Article  CAS  Google Scholar 

  32. Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, Wang S, Lin Y (2015) Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett 364(2):165–172

    Article  CAS  Google Scholar 

  33. de Campos Zuccari DAP, Leonel C, Castro R, Gelaleti GB, Jardim BV, Moscheta MG, Regiani VR, Ferreira LC, Lopes JR, de Santi ND (2012) An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem 114(6):571–576. https://doi.org/10.1016/j.acthis.2011.10.007

    Article  CAS  Google Scholar 

  34. Liu Q, Li A, Yu S, Qin S, Han N, Pestell RG, Han X, Wu K (2018) DACH1 antagonizes CXCL8 to repress tumorigenesis of lung adenocarcinoma and improve prognosis. J Hematol Oncol 11(1):1–16

    Article  Google Scholar 

  35. Gatla HR, Zou Y, Uddin MM, Singha B, Bu P, Vancura A, Vancurova I (2017) Histone deacetylase (HDAC) inhibition induces IκB kinase (IKK)-dependent interleukin-8/CXCL8 expression in ovarian cancer cells. J Biol Chem 292(12):5043–5054

    Article  CAS  Google Scholar 

  36. Wang L-H, Cheng GZ, Park S, Shu S, He L, Kong W, Zhang W, Yuan Z, Cheng JQ (2008) Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets 8(1):2–6. https://doi.org/10.2174/156800908783497159

    Article  PubMed  Google Scholar 

  37. MacManus CF, Pettigrew J, Seaton A, Wilson C, Maxwell PJ, Berlingeri S, Purcell C, McGurk M, Johnston PG, Waugh DJ (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5(7):737–748. https://doi.org/10.1158/1541-7786.MCR-07-0032

    Article  CAS  PubMed  Google Scholar 

  38. Knall C, Young S, Nick JA, Buhl AM, Worthen GS, Johnson GL (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838. https://doi.org/10.1074/jbc.271.5.2832

    Article  CAS  PubMed  Google Scholar 

  39. Luppi F, Longo A, De Boer W, Rabe K, Hiemstra P (2007) Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer 56(1):25–33. https://doi.org/10.1016/j.lungcan.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  40. Murphy C, McGurk M, Pettigrew J, Santinelli A, Mazzucchelli R, Johnston PG, Montironi R, Waugh DJ (2005) Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res 11(11):4117–4127. https://doi.org/10.1158/1078-0432.CCR-04-1518

    Article  CAS  PubMed  Google Scholar 

  41. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Nunez-Alvarez C, Hernandez-Ramirez D, Bockenstedt PL, Liaw PC, Cabral AR, Knight JS (2015) Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol 67(11):2990–3003. https://doi.org/10.1002/art.39247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lang K, Niggemann B, Zanker KS, Entschladen F (2002) Signal processing in migrating T24 human bladder carcinoma cells: role of the autocrine interleukin-8 loop. Int J Cancer 99(5):673–680. https://doi.org/10.1002/ijc.10424

    Article  CAS  PubMed  Google Scholar 

  43. Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, Vermeulen PB, Dirix LY (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10(21):7157–7162. https://doi.org/10.1158/1078-0432.CCR-04-0812

    Article  CAS  PubMed  Google Scholar 

  44. Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, Bracey JW, Akel NS, Margulies AG, Skinner RA, Swain FL, Hogue WR, Montgomery CO, Lahiji P, Maher JJ, Leitzel KE, Ali SM, Lipton A, Nicholas RW, Gaddy D, Suva LJ (2014) Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone 61:176–185. https://doi.org/10.1016/j.bone.2014.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, Zheng YL, Bowman ED, Engels EA, Caporaso NE, Harris CC (2011) Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst 103(14):1112–1122. https://doi.org/10.1093/jnci/djr216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bălăşoiu M, Bălăşoiu AT, Mogoantă SŞ, Bărbălan A, Stepan AE, Ciurea RN, Alexandru DO, Enescu A, Mogoantă L (2014) Serum and tumor microenvironment IL-8 values in different stages of colorectal cancer. Rom J Morphol Embryol 55(2 Suppl):575–578

    PubMed  Google Scholar 

  47. David JM, Dominguez C, Hamilton DH, Palena C (2016) The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines (Basel) 4(3):22. https://doi.org/10.3390/vaccines4030022

    Article  CAS  Google Scholar 

  48. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109(4):507–515. https://doi.org/10.1002/ijc.11724

    Article  CAS  PubMed  Google Scholar 

  49. Singh JK, Simoes BM, Clarke RB, Bundred NJ (2013) Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets 17(11):1235–1241. https://doi.org/10.1517/14728222.2013.835398

    Article  CAS  PubMed  Google Scholar 

  50. Singh JK, Simões BM, Howell SJ, Farnie G, Clarke RB (2013) Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res 15(4):1–9. https://doi.org/10.1186/bcr3436

    Article  CAS  Google Scholar 

  51. Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, Price JE (2004) Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy. Eur J Cancer 40(16):2509–2518. https://doi.org/10.1016/j.ejca.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  52. Marjon PL, Bobrovnikova-Marjon EV, Abcouwer SF (2004) Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol Cancer 3(1):1–12. https://doi.org/10.1186/1476-4598-3-4

    Article  Google Scholar 

  53. Yao C, Lin Y, Chua MS, Ye CS, Bi J, Li W, Zhu YF, Wang SM (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121(9):1949–1957. https://doi.org/10.1002/ijc.22930

    Article  CAS  PubMed  Google Scholar 

  54. De Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC, Furcht LT (2001) A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol 158(2):639–646. https://doi.org/10.1016/S0002-9440(10)64005-9

    Article  PubMed  PubMed Central  Google Scholar 

  55. Singh B, Berry JA, Vincent LE, Lucci A (2006) Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer. J Surg Res 134(1):44–51. https://doi.org/10.1016/j.jss.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  56. Wu K, Katiyar S, Li A, Liu M, Ju X, Popov VM, Jiao X, Lisanti MP, Casola A, Pestell RG (2008) Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proc Natl Acad Sci USA 105(19):6924–6929. https://doi.org/10.1073/pnas.0802085105

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sharma B, Varney ML, Saxena S, Wu L, Singh RK (2016) Induction of CXCR2 ligands, stem cell-like phenotype, and metastasis in chemotherapy-resistant breast cancer cells. Cancer Lett 372(2):192–200. https://doi.org/10.1016/j.canlet.2015.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, Gaetje R, Solbach C, Ahr A, Metzler D (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 13(5):1–12

    Article  Google Scholar 

  59. Freund A, Jolivel V, Durand S, Kersual N, Chalbos D, Chavey C, Vignon F, Lazennec G (2004) Mechanisms underlying differential expression of interleukin-8 in breast cancer cells. Oncogene 23:6105–6114

    Article  CAS  Google Scholar 

  60. Snoussi K, Mahfoudh W, Bouaouina N, Fekih M, Khairi H, Helal AN, Chouchane L (2010) Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness. BMC Cancer 10(1):283. https://doi.org/10.1186/1471-2407-10-283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang J, Yao JL, Zhang L, Bourne PA, Quinn AM, di Sant’Agnese PA, Reeder JE (2005) Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer. Am J Pathol 166(6):1807–1815. https://doi.org/10.1016/S0002-9440(10)62490-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peveri P, Walz A, Dewald B, Baggiolini M (1988) A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med 167(5):1547–1559. https://doi.org/10.1084/jem.167.5.1547

    Article  CAS  PubMed  Google Scholar 

  63. Sun H, Chung W-C, Ryu S-H, Ju Z, Tran HT, Kim E, Kurie JM, Koo JS (2008) Cyclic AMP-responsive element binding protein- and nuclear factor-κB–regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res 1(5):316–328. https://doi.org/10.1158/1940-6207.CAPR-07-0002

    Article  CAS  Google Scholar 

  64. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. https://doi.org/10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  65. Singh S, Sadanandam A, Varney ML, Nannuru KC, Singh RK (2010) Small interfering RNA-mediated CXCR1 or CXCR2 knock-down inhibits melanoma tumor growth and invasion. Int J Cancer 126(2):328–336. https://doi.org/10.1002/ijc.24714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fang W, Ye L, Shen L, Cai J, Huang F, Wei Q, Fei X, Chen X, Guan H, Wang W, Li X, Ning G (2014) Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis 35(8):1780–1787. https://doi.org/10.1093/carcin/bgu060

    Article  CAS  PubMed  Google Scholar 

  67. Sharma B, Nannuru KC, Varney ML, Singh RK (2015) Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin Exp Metastasis 32(1):65–72. https://doi.org/10.1007/s10585-014-9691-0

    Article  CAS  PubMed  Google Scholar 

  68. Leung SJ, Rice PS, Barton JK (2015) In vivo molecular mapping of the tumor microenvironment in an azoxymethane-treated mouse model of colon carcinogenesis. Lasers Surg Med 47(1):40–49. https://doi.org/10.1002/lsm.22309

    Article  PubMed  Google Scholar 

  69. Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, Nagulapalli Venkata KC, Rosenberg DO, Petasis NA, Lenz HJ, Hong YK (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833–1841. https://doi.org/10.1038/bjc.2012.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wislez M, Fujimoto N, Izzo JG, Hanna AE, Cody DD, Langley RR, Tang H, Burdick MD, Sato M, Minna JD, Mao L, Wistuba I, Strieter RM, Kurie JM (2006) High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 66(8):4198–4207. https://doi.org/10.1158/0008-5472.CAN-05-3842

    Article  CAS  PubMed  Google Scholar 

  71. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, Asaoka Y, Maeda S, Ikenoue T, Tateishi K, Wright CV, Koike K, Omata M, Moses HL (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121(10):4106–4117. https://doi.org/10.1172/JCI42754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. https://doi.org/10.1016/j.cell.2012.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tang Z, Yu M, Miller F, Berk RS, Tromp G, Kosir MA (2008) Increased invasion through basement membrane by CXCL7-transfected breast cells. Am J Surg 196(5):690–696. https://doi.org/10.1016/j.amjsurg.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  74. Bohrer LR, Schwertfeger KL (2012) Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol Cancer Res 10(10):1294–1305. https://doi.org/10.1158/1541-7786.MCR-12-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shao N, Chen LH, Ye RY, Lin Y, Wang SM (2013) The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells. Biochem Biophys Res Commun 431(3):535–541. https://doi.org/10.1016/j.bbrc.2013.01.022

    Article  CAS  PubMed  Google Scholar 

  76. Shi Z, Yang WM, Chen LP, Yang DH, Zhou Q, Zhu J, Chen JJ, Huang RC, Chen ZS, Huang RP (2012) Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat 135(3):737–747. https://doi.org/10.1007/s10549-012-2196-0

    Article  CAS  PubMed  Google Scholar 

  77. Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh RK (2013) Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Cancer Ther 12(5):799–808. https://doi.org/10.1158/1535-7163.MCT-12-0529

    Article  CAS  PubMed  Google Scholar 

  78. Nannuru KC, Sharma B, Varney ML, Singh RK (2011) Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinogenes 10:40. https://doi.org/10.4103/1477-3163.92308

    Article  CAS  Google Scholar 

  79. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci USA 101(32):11791–11796

    Article  CAS  Google Scholar 

  80. Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJ (2008) Interleukin-8 signaling attenuates TRAIL-and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 7(9):2649–2661

    Article  CAS  Google Scholar 

  81. Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LaBonte MJ, Wilson PM (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128(9):2038–2049

    Article  CAS  Google Scholar 

  82. Ueda T, Shimada E, Urakawa T (1994) Serum levels of cytokines in patients with colorectal cancer: possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis. J Gastroenterol 29(4):423–429

    Article  CAS  Google Scholar 

  83. Liang-kuan B, Nan Z, Cheng L, Fu-Ding L, Tian-Xin L, Xu-Jun X, Chun J, Jin-Li H, Hai H, Cai-Xia Z (2014) Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells. In: Urologic oncology: seminars and original investigations, vol 5. Elsevier, Amsterdam, pp 607–612

  84. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian C-N, Kahnoski R, Futreal PA, Furge KA, Teh BT (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70(3):1063–1071

    Article  CAS  Google Scholar 

  85. Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL, Li LZ (2011) Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 56(2):365–375

    Article  CAS  Google Scholar 

  86. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Venkata KCN (2012) The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther 11(6):1353–1364

    Article  CAS  Google Scholar 

  87. Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G, Wicha M (2017) Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2–negative metastatic breast cancer. Clin Cancer Res 23(18):5358–5365

    Article  CAS  Google Scholar 

  88. Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim D-K, Kim K (2019) Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 9(25):7906

    Article  CAS  Google Scholar 

  89. Goldstein L, Sparano J, Perez R, Vito C, Reuben J, Landis M, McCanna S, Ruffini P, Cristofanilli M, Chang J (2013) Abstract OT2-6-03: a single arm, preoperative, pilot study to evaluate the safety and biological effects of orally administered reparixin in early breast cancer patients who are candidates for surgery. AACR

  90. Goldstein LJ, Perez RP, Yardley DA, Han LK, Reuben JM, McCanna S, Butler B, Ruffini PA, Chang JC (2016) Abstract CT057: a single-arm, preoperative, pilot study to evaluate the safety and biological effects of orally administered reparixin in early breast cancer patients who are candidates for surgery. AACR

  91. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AM, and NN conducted the literature search and did writing. KHS contributed to writing. JM, and VT conceptualized the ideas and contributed to writing and preparing the final version of the manuscript.

Corresponding author

Correspondence to Vishwas Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent obtained from all individual participants was included in the study. All authors have read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Suman, K.H., Nair, N. et al. An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer. Mol Biol Rep 48, 6551–6561 (2021). https://doi.org/10.1007/s11033-021-06648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06648-8

Keywords

Navigation