Skip to main content
Log in

A new approach for activation of the kiwifruit cysteine protease for usage in in-vitro testing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Actinidin (Act d 1), a highly abundant cysteine protease from kiwifruit, is one of the major contributors to the development of kiwifruit allergy. Many studies have focused on the optimization of Act d 1 purification and its role in the development of food allergies. Testing on cell culture monolayers is a common step in the elucidation of food allergen sensitization. In the case of cysteine proteases, an additional activation step with l-cysteine is required before the testing. Hence, we aimed to evaluate whether l-cysteine already present in commonly used cell culture media would suffice for Act d 1 activation. Successfully activated Act d 1 (98.1% of proteolytic activity, as compared to l-cysteine activated Act d 1) was further tested in two commonly used 2D model systems (Caco-2 and HEK293 cells) to evaluate its role on the mRNA expression of cytokines involved in the innate immunity (IL-1β, IL-6, TNFα, TSLP). Furthermore, the contribution of Act d 1 in the promotion of inflammation through regulation of inducible nitric oxide synthase (iNOS) mRNA expression was also examined. These results demonstrate that activation of cysteine proteases can be achieved without previous enzyme incubation in l-cysteine -containing solution. Act d 1 incubated in cell culture medium was able to modulate gene expression of pro-inflammatory cytokines when tested on two model systems of the epithelial barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boland M, Moughan PJ (2013) Advances in food and nutrition research. Nutr Benefits Kiwifruit 68:28

    Google Scholar 

  2. Nieuwenhuizen NJ et al (2012) Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit. Plant Physiol 158(1):376–388

    Article  CAS  PubMed  Google Scholar 

  3. Arnon R (1970) Papain. Methods Enzymol 19:226–244

    Article  Google Scholar 

  4. Grozdanovic M, Ostojic S, Aleksic I, Andjelkovic U, Petersen A, Gavrovic-Jankulovic M (2014) Active actinidin retains function upon gastro-intestinal digestion and is more thermostable than the E-64-inhibited counterpart. J Sci Food Agric 94(14):3046–3052

    Article  CAS  PubMed  Google Scholar 

  5. Boland M (2013) Kiwifruit proteins and enzymes: actinidin and other significant proteins. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  6. Grozdanovic M et al (2012) Evaluation of IgE reactivity of active and thermally inactivated actinidin, a biomarker of kiwifruit allergy. Food Chem Toxicol 50(3–4):1013–1018

    Article  CAS  PubMed  Google Scholar 

  7. Grozdanovic M et al (2016) Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. Biochim Biophys Acta 1860(3):516–526

    Article  CAS  PubMed  Google Scholar 

  8. Cavic M, Grozdanovic MM, Bajic A, Jankovic R, Andjus PR, Gavrovic-Jankulovic M (2014) The effect of kiwifruit (Actinidia deliciosa) cysteine protease actinidin on the occludin tight junction network in T84 intestinal epithelial cells. Food Chem Toxicol 72:61–68

    Article  CAS  PubMed  Google Scholar 

  9. Pastorello EA et al (Apr. 1998) Identification of actinidin as the major allergen of kiwi fruit. J Allergy Clin Immunol 101(4 Pt 1):531–537

    Article  CAS  PubMed  Google Scholar 

  10. Popović M, Grozdanović M, Gavrović-Jankulović M (2013) Kiwifruit as a food allergen source. J Serbian Chem Soc 78(3):333–352

    Article  Google Scholar 

  11. Ritacco FV, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34(6):1407–1426

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Vanga SK, McCusker C, Raghavan V (2019) A comprehensive review on kiwifruit allergy: pathogenesis, diagnosis, management, and potential modification of allergens through processing. Compr Rev Food Sci Food Saf 18(2):500–513

    Article  PubMed  Google Scholar 

  13. Le TM et al (2013) Kiwifruit allergy across Europe: clinical manifestation and IgE recognition patterns to kiwifruit allergens. J Allergy Clin Immunol 131(1):164–171

    Article  CAS  PubMed  Google Scholar 

  14. Álvarez AM, Sexto L, Bardina L, Grishina G, Sampson H (2015) Kiwifruit allergy in children: characterization of main allergens and patterns of recognitio. Children 2(4):424–438

    Article  Google Scholar 

  15. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: Linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204

    Article  CAS  PubMed  Google Scholar 

  16. Galand C et al (2016) IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol 138(5):1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu W, Freeland DMH, Nadeau KC (2016) Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16(12):751–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soumelis V et al (2002) Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat Immunol 3(7):673–680

    Article  CAS  PubMed  Google Scholar 

  19. Khodoun MV, Tomar S, Tocker JE, Wang YH, Finkelman FD (2018) Food allergy and gastrointestinal disease Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25 and IL-33. J Allergy Clin Immunol 141(1):171-179.e1

    Article  CAS  PubMed  Google Scholar 

  20. Reithofer M, Jahn-Schmid B (2017) Allergens with protease activity from house dust mites. Int J Mol Sci 18(7):11–13

    Google Scholar 

  21. Reche PA et al (2001) Human Thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167(1):336–343

    Article  CAS  PubMed  Google Scholar 

  22. Sampson HA, O’Mahony L, Burks AW, Plaut M, Lack G, Akdis CA (2018) Mechanisms of food allergy. J Allergy Clin Immunol 141(1):11–19

    Article  CAS  PubMed  Google Scholar 

  23. Lane C et al (2004) Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax 59(9):757–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1(8):1397–1406

    Article  CAS  PubMed  Google Scholar 

  25. Rumbo M, Courjault-Gautier F, Sierro F, Sirard JC, Felley-Bosco E (2005) Polarized distribution of inducible nitric oxide synthase regulates activity in intestinal epithelial cells. FEBS J 272(2):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hiramoto K, Kobayashi H, Orita K, Sato FE, Ishii M (2013) Inducible nitric oxide synthase plays important roles in allergic reactions of pollinosis in mice sensitized with pollen allergy. J Clin Biochem Nutr 52(1):146–153

    Google Scholar 

  27. Liu SF et al (1997) Inducible nitric oxide synthase after sensitization and allergen challenge of Brown Norway rat lung. Br J Pharmacol 121(7):1241–1246

    Article  CAS  PubMed  Google Scholar 

  28. Nešić A et al (2019) Activation of epithelial cells by the major kiwifruit allergen Act d 1 in human and mouse-derived intestinal model. J Funct Foods 62:8

    Article  Google Scholar 

  29. Nešić A et al (2019) The kiwifruit allergen Act d 1 activates NF- κ B signaling and affects mRNA expression of TJ proteins and innate pro-allergenic cytokines. Biomolecules 25:1–13

    Google Scholar 

  30. Drapeau GR (1976) Protease from Staphyloccus aureus. Methods Enzymol 45:469–475

    Article  CAS  PubMed  Google Scholar 

  31. Cavic M, Grozdanović M, Bajić A, Srdić-Rajić T, Anjus PR, Gavrović-Jankulović M (2012) Actinidin, a protease from kiwifruit, induces changes in morphology and adhesion of T84 intestinal epithelial cells. Phytochemistry 77:46–52

    Article  CAS  PubMed  Google Scholar 

  32. Untersmayr E (2015) The influence of gastric digestion on the development of food allergy. Rev Fr Allergol 55(7):444–447

    Article  Google Scholar 

  33. Uberti F et al (2015) Molecular characterization of allergens in raw and processed kiwifruit. Pediatr Allergy Immunol 26(2):139–144

    Article  PubMed  Google Scholar 

  34. Schiavi E, Smolinska S, Omahony L (2015) Intestinal dendritic cells. Curr Opin Gastroentero 31(2):98–103

    Article  CAS  Google Scholar 

  35. Salazar F, Ghaemmaghami AM (2013) Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol 4(11):1–10

    CAS  Google Scholar 

  36. Van Bilsen JHM et al (2017) Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 7(1):1–18

    Article  Google Scholar 

  37. Rusznak C et al (2001) Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells. Clin Exp Allergy 31(2):226–238

    Article  CAS  PubMed  Google Scholar 

  38. Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc Natl Acad Sci USA 104(3):914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrijana Nešić.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nešić, A., Čavić, M., Popović, M. et al. A new approach for activation of the kiwifruit cysteine protease for usage in in-vitro testing. Mol Biol Rep 48, 4065–4072 (2021). https://doi.org/10.1007/s11033-021-06416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06416-8

Keywords

Navigation