Skip to main content
Log in

Correlation of perilipin 2 and lipid metabolism in elective cesarean section and vaginal delivery: a prospective study with oxidative and apoptotic pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vaginal delivery (VD) and elective cesarean (CS) delivery modes may cause significant differences in maternal and fetal metabolism. In this study, we aimed to investigate changes in lipid metabolism, oxidative and apoptotic signaling pathways during VD and CS in maternal and cord blood and placenta tissue. The study included two groups of participants delivered via 90 CS and 90 VD. Maternal and cord blood samples were collected from the participants. In addition, placenta samples were also taken after delivery. Total oxidant (TOS), malondialdehyde (MDA), total antioxidant (TAS), glutathione (GSH), cleaved caspase 3 (CASP3) and perilipin 2 (PLIN2) levels were measured to determine oxidative stress, antioxidant levels and apoptosis status in the VD and CS groups. Besides, PLIN2 mRNA expressions in placental specimens were analyzed. We found no statistically significant difference in maternal age, body mass index, gestational age, birth weight and Apgar scores in both groups (P > 0.05). The increase in MDA, TOS, GSH and TAS levels was higher in the VD group compared to the CS group (P < 0.05). Similarly, PLIN2 levels and lipid profiles showed an increase in the VD group (P < 0.05 vs CS group). Likewise, PLIN2 expression enhanced in the VD group (P < 0.05 vs CS group). However, CASP3 activity reduced in maternal and cord blood in the VD group compared to the CS group. Our results support that the delivery mode may cause differences in lipid profile, oxidative and apoptotic status by affecting PLIN2 levels in both maternal and cord blood and placenta tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiriakopoulos N, Grigoriadis S, Maziotis E et al (2019) Investigating stress response during vaginal delivery and elective cesarean section through assessment of levels of cortisol, interleukin 6 (IL-6), growth hormone (GH) and insulin-like growth factor 1 (IGF-1). J Clin Med 8(8):1112. https://doi.org/10.3390/jcm8081112

    Article  CAS  PubMed Central  Google Scholar 

  2. Strauss RS (1997) Effects of the intrauterine environment on childhood growth. Br Med Bull 33(1):81–89. https://doi.org/10.1093/oxfordjournals.bmb.a011608

    Article  Google Scholar 

  3. Landon MB, Hauth JC, Leveno KJ et al (2004) Maternal and perinatal outcomes associated with a trial of labor after prior cesarean delivery. N Engl J Med 351:2581–2589. https://doi.org/10.1056/NEJMoa040405

    Article  CAS  PubMed  Google Scholar 

  4. Villar J, Carroli G, Zavaleta N et al (2007) Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. BMJ 335(7628):1025. https://doi.org/10.1136/bmj.39363.706956.55

    Article  PubMed  PubMed Central  Google Scholar 

  5. Menacker F, Declercq E, Macdorman MF (2006) Cesarean delivery: background, trends, and epidemiology. Semin Perinatol 30(5):235–241. https://doi.org/10.1053/j.semperi.2006.07.002

    Article  PubMed  Google Scholar 

  6. Coughlan C, Kearney R, Turner MJ (2002) What are the implications for the next delivery in primigravidae who have an elective caesarean section for breech presentation? Br J Obstet Gynaecol 109:624–626. https://doi.org/10.1111/j.1471-0528.2002.01365.x

    Article  Google Scholar 

  7. Lydon-Rochelle M, Holt VL, Easterling TR et al (2001) First-birth caesarean and placental abruption or previa at second birth(1). Obstet Gynecol 97:765–769

    Article  CAS  Google Scholar 

  8. Wolf H, Schaap AH, Bruinse HW et al (1999) Vaginal delivery compared with caesarean section in early preterm breech delivery: a comparison of long term outcome. Br J Obstet Gynaecol 106(5):486–491. https://doi.org/10.1111/j.1471-0528.1999.tb08303.x

    Article  CAS  PubMed  Google Scholar 

  9. Priya SP, Cert SA, Nelson-Piercy C et al (2016) Physiological changes in pregnancy. Cardiovasc J Afr 27(2):89–94. https://doi.org/10.5830/CVJA-2016-021

    Article  Google Scholar 

  10. Devrim E, Tarhan I, Erguder IB et al (2006) Oxidant /antioxidant status 0f placenta, blood, and cord blood samp les from pregnant women supplemented with iron. J Sos Gynecol Investig 13(7):502–505. https://doi.org/10.1016/j.jsgi.2006.07.004

    Article  CAS  Google Scholar 

  11. Yaacobi N, Ohel G, Hochman A (1999) Reactive oxygen species in the process of labor. Arch Gynecol Obstet 263:23–24. https://doi.org/10.1007/s004040050255

    Article  CAS  PubMed  Google Scholar 

  12. Harirah HM, Borahay MA, Zaman W et al (2012) Increased apoptosis in chorionic trophoblasts of human fetal membranes with labor at term. Int J Clin Med 3(02):136–142. https://doi.org/10.4236/ijcm.2012.32027

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biasucci G, Rubini M, Riboni S et al (2010) Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev 86(1):13–25. https://doi.org/10.1016/j.earlhumdev.2010.01.004

    Article  PubMed  Google Scholar 

  14. Cardwell CR, Stene LC, Joner G et al (2008) Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetol 51:726–735. https://doi.org/10.1007/s00125-008-0941-z

    Article  CAS  Google Scholar 

  15. Sahi̇n I, Hacioglu C, Alpay M et al (2020) Comparison of type I diabetes frequency in children with cesarean and normal vaginal delivery. Duzce Med J 22(2):114–118. https://doi.org/10.18678/dtfd.731891

    Article  Google Scholar 

  16. Kremmyda LS, Tvrzicka E, Stankova B et al (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease: a review part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(3):195–218. https://doi.org/10.5507/bp.2011.052

    Article  CAS  PubMed  Google Scholar 

  17. Castillo-Ruiz A, Mosley M, Jacobs AJ et al (2018) Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci USA 115(46):11826–11831. https://doi.org/10.1073/pnas.1811962115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy 2012:179827. https://doi.org/10.1155/2012/179827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bildirici I, Roh CR, Schaiff WT et al (2003) The lipid droplet-associated protein adipophilin is expressed in human trophoblasts and is regulated by peroxisomal proliferator-activated receptor-gamma/retinoid X receptor. J Clin Endocrinol Metab 88(12):6056–6062. https://doi.org/10.1210/jc.2003-030628

    Article  CAS  PubMed  Google Scholar 

  21. Unger RH, Clark GO, Scherer PE et al (1801) (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 3:209–214. https://doi.org/10.1016/j.bbalip.2009.10.006

    Article  CAS  Google Scholar 

  22. Vogl SE, Worda C, Egarter C et al (2006) Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG 113(4):441–445. https://doi.org/10.1111/j.1471-0528.2006.00865.x

    Article  CAS  PubMed  Google Scholar 

  23. Arguelles S, Machado MJ, Ayala A et al (2006) Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radic Res 40(6):565–570. https://doi.org/10.1080/10715760500519834

    Article  CAS  PubMed  Google Scholar 

  24. Arikan S, Konukoğlu D, Arikan C et al (2001) Lipid peroxidation and antioxidant status in maternal and cord blood. Gynecol Obstet Invest 51(3):145–149. https://doi.org/10.1159/000052913

    Article  CAS  PubMed  Google Scholar 

  25. Mocatta TJ, Winterbourn CC, Inder TE et al (2004) The effect of gestational age and labour on markers of lipid and protein oxidation in cord plasma. Free Radic Res 38(2):185–191. https://doi.org/10.1080/10715760310001646048

    Article  CAS  PubMed  Google Scholar 

  26. Hung TH, Chen SF, Hsieh TT et al (2011) The associations between labor and delivery mode and maternal and placental oxidative stress. Reprod Toxicol 31(2):144–150. https://doi.org/10.1016/j.reprotox.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  27. Calderon TC, Wu W, Rawson RA et al (2008) Effect of mode of birth on purine and malondialdehyde in umbilical arterial plasma in normal term newborns. J Perinatol 28:475–481. https://doi.org/10.1038/jp.2008.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mutlu B, Aksoy N, Cakir H et al (2011) The effects of the mode of delivery on oxidative-antioxidative balance. J Matern Fetal Neonatal Med 24(11):1367–1370. https://doi.org/10.3109/14767058.2010.548883

    Article  CAS  PubMed  Google Scholar 

  29. Raijmakers MT, Roes EM, Steegers EA et al (2003) Umbilical glutathione levels are higher after vaginal birth than after cesarean section. J Perinat Med 31(6):520–522. https://doi.org/10.1515/JPM.2003.079

    Article  CAS  PubMed  Google Scholar 

  30. Paamoni-Keren O, Silberstein T, Burg A et al (2007) Oxidative stress as determined by glutathione (GSH) concentrations in venous cord blood in elective cesarean delivery versus uncomplicated vaginal delivery. Arch Gynecol Obstet 276(1):43–46. https://doi.org/10.1007/s00404-006-0304-2

    Article  CAS  PubMed  Google Scholar 

  31. May JM, Qu ZC, Whitesell RR et al (1996) Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Biol Med 20(4):543–551. https://doi.org/10.1016/0891-5849(95)02130-2

    Article  CAS  PubMed  Google Scholar 

  32. Noh EJ, Kim YH, Cho MK et al (2014) Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet Gynecol Sci 57(2):109–114. https://doi.org/10.5468/ogs.2014.57.2.109

    Article  PubMed  PubMed Central  Google Scholar 

  33. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  34. Xu J, Wang HL (2005) Role of Caspase and MMPs in amniochorionic during PROM. J Reprod Contracept 16:219–224

    CAS  Google Scholar 

  35. Delgado I, Neubert R, Dudenhausen JW (1994) Changes in white blood cells during parturition in mothers and newborn. Gynecol Obstet Invest 38:227–235. https://doi.org/10.1159/000292487

    Article  CAS  PubMed  Google Scholar 

  36. Young SG, Zechner R (2013) Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 27(5):459–484. https://doi.org/10.1101/gad.209296.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimmel AR, Sztalryd C (2016) The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr 17(36):471–509. https://doi.org/10.1146/annurev-nutr-071813-105410

    Article  CAS  Google Scholar 

  38. Bildirici I, Schaiff WT, Chen B et al (2018) PLIN2 is essential for trophoblastic lipid droplet accumulation and cell survival during hypoxia. Endocrinol 159(12):3937–3949. https://doi.org/10.1210/en.2018-00752

    Article  CAS  Google Scholar 

  39. Grundler F, Mesnage R, Goutzourelas N et al (2020) Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem Toxicol 145:111701. https://doi.org/10.1016/j.fct.2020.111701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilhelmi de Toledo F, Grundler F, Goutzourelas N et al (2020) Influence of long-term fasting on blood redox status in humans. Antioxidants (Basel) 9(6):496. https://doi.org/10.3390/antiox9060496

    Article  CAS  Google Scholar 

  41. Abd-El-Aal DE, Shahin AY, Hamed HO (2009) Effect of short-term maternal fasting in the third trimester on uterine, umbilical, and fetal middle cerebral artery Doppler indices. Int J Gynaecol Obstet 107(1):23–25. https://doi.org/10.1016/j.ijgo.2009.05.014

    Article  PubMed  Google Scholar 

  42. Dikensoy E, Balat O, Cebesoy B et al (2009) The effect of Ramadan fasting on maternal serum lipids, cortisol levels and fetal development. Arch Gynecol Obstet 279(2):119–123. https://doi.org/10.1007/s00404-008-0680-x

    Article  PubMed  Google Scholar 

  43. Hagnevik K, Faxelius G, Irestedt L et al (1984) Catecholamine surge and metabolic adaptation in the newborn after vaginal delivery and caesarean section. Acta Paediatr Scand 73(5):602–609. https://doi.org/10.1111/j.1651-2227.1984.tb09982.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CH and IES contributed to the study conception and design. Material preparation, data collection and analysis were performed by CH, IES and CU. The first draft of the manuscript was written by CH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Düzce University Non-Invasive Health Research Ethics Committee (Decision no: 2020/30) and was carried out in accordance with the Helsinki declaration.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Patients signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Sahin, I.E. & Uyuk, C. Correlation of perilipin 2 and lipid metabolism in elective cesarean section and vaginal delivery: a prospective study with oxidative and apoptotic pathways. Mol Biol Rep 48, 3991–3998 (2021). https://doi.org/10.1007/s11033-021-06399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06399-6

Keywords

Navigation