Skip to main content
Log in

A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Studying the maternal oocyte-specific genes, in farm animals is a significant step towards delineating the underlying mechanisms that regulate oocyte quality, early embryonic development and survival. With the creation of buffalo oocyte-specific subtracted cDNA library, it has raised new questions which need to be answered. The present study has characterized one of the ESTs selected from the library and highlighted its importance in the oocyte quality. The selected EST was made full length by RLM-RACE and four transcript variants were identified. Bioinformatics analysis indicated the novelty of full-length transcript along with conserved intergenic nature. The largest transcript was identified as long intergenic noncoding RNA based upon coding potential calculator output. The expression analysis at different hours of oocyte maturation showed a significant variation in developmentally competent oocytes to that of incompetent ones. Along with this, the transcript was also found to have protein binding ability which was confirmed by RNA electrophoretic mobility shift assay. The protein used in the experiment was isolated from oocyte and cumulus cells via sonication. A novel lincRNA has been reported here that might have an important role in maturation of oocytes, inferred from its relative gene expression study and protein binding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ESTs:

Expressed sequence tags

RLM:

RNA ligase mediated

RACE:

Rapid amplification of cDNA ends

COC:

Cumulus oocyte complex

μg:

Micro gram

ml:

Millilitre

PBS:

Phosphate buffer saline

NCBI:

National Centre for Biotechnology Information

BLAST:

Basic local alignment search tool

RPS:

Ribosomal protein S

References

  1. Jain T, Jain A, Kumar P, Goswami SL, De S, Singh D, Datta TK (2012) Kinetics of GDF9 expression in buffalo oocytes during in vitro maturation and their associated development ability. Gen Comp Endocrinol 178:477–484

    Article  CAS  PubMed  Google Scholar 

  2. Waiz SA, Raies-ul-Haq M, Dhanda S, Kumar A, Goud TS, Chauhan MS, Upadhyay RC (2016) Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation. Int J Biometeorol 60(9):1–10

    Article  Google Scholar 

  3. Baruselli PS, Soares JG, Bayeux BM, Silva JC, Mingoti RD, Carvalho NA (2018) Assisted reproductive technologies (ART) in water buffaloes. Anim Reprod 15:971–983

    Article  Google Scholar 

  4. Kumar S, Kumar M, Dholpuria S, Sarwalia P, Batra V, De S, Kumar R, Datta TK (2018) Transient arrest of germinal vesicle breakdown improved in vitro development potential of buffalo (Bubalus Bubalis) oocytes. J Cell Biochem 119:278–289

    Article  CAS  PubMed  Google Scholar 

  5. Catalá MG, Izquierdo D, Uzbekova S, Morató R, Roura M, Romaguera R, Papillier P, Paramio MT (2011) Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction 142:517

    Article  PubMed  Google Scholar 

  6. Opiela J, Lipiński D, Słomski R, Kątska-Książkiewicz L (2010) Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim Reprod Sci 118:188–193

    Article  CAS  PubMed  Google Scholar 

  7. Wu YG, Liu Y, Zhou P, Lan GC, Han D, Miao DQ, Tan JH (2007) Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res 17:722–731

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez-González E, López-Bejar M, Izquierdo D, Paramio MT (2003) Developmental competence of prepubertal goat oocytes selected with brilliant cresyl blue and matured with cysteamine supplementation. Reprod Nutr Dev 43:179–187

    Article  PubMed  Google Scholar 

  9. Ishizaki C, Watanabe H, Bhuiyan MMU, Fukui Y (2009) Developmental competence of porcine oocytes selected by brilliant cresyl blue and matured individually in a chemically defined culture medium. Theriogenology 72:72–80

    Article  CAS  PubMed  Google Scholar 

  10. Manjunatha BM, Gupta PSP, Devaraj M, Ravindra JP, Nandi S (2007) Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68:1299–1304

    Article  CAS  PubMed  Google Scholar 

  11. Ericsson SA, Boice ML, Funahashi H, Day BN (1993) Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39:214

    Article  Google Scholar 

  12. Bettegowda A, Yao J, Sen A, Li Q, Lee KB, Kobayashi Y, Patel OV, Coussens PM, Ireland JJ, Smith GW (2007) JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle. Proc Natl Acad Sci USA 104:17602–17607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baillet A, Mandon-Pépin B, Cabau C, Poumerol E, Pailhoux E, Cotinot C (2008) Identification of transcripts involved in meiosis and follicle formation during ovine ovary development. BMC Genomics 9:1

    Article  Google Scholar 

  14. Parrish EM, Siletz A, Xu M, Woodruff TK, Shea LD (2011) Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system. Reproduction 142:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342:1518–1521

    Article  CAS  PubMed  Google Scholar 

  16. Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, de Sousa Lopes SMC, van der Westerlaken LA, Zischler H, Butter F, Roelen BA, Ketting RF (2015) Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 10:2069–2082

    Article  CAS  PubMed  Google Scholar 

  17. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  CAS  PubMed  Google Scholar 

  18. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karlic R, Ganesh S, Franke V, Svobodova E, Urbanova J, Suzuki Y, Aoki F, Vlahovicek K, Svoboda P (2017) Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. DNA Res 24:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaître JM, De Vos J, Assou S (2018) Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  21. Davidovich C, Cech TR (2015) The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21:2007–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, Zhao Y, Zhai L, Zhong R, Li C, Zou X (2017) Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun 8:1–12

    Google Scholar 

  23. Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, Xiong W (2017) Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer 16:1–8

    Article  CAS  Google Scholar 

  24. Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung JK, Ramchandran R (2018) Temporal and spatial post-transcriptional regulation of Zebrafish tie1 mRNA by long noncoding RNA during brain vascular assembly. Arterioscler Thromb Vasc Biol 38:1562–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He RZ, Luo DX, Mo YY (2019) Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis 6:6–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballantyne MD, Pinel K, Dakin R, Vesey AT, Diver L, Mackenzie R, Garcia R, Welsh P, Sattar N, Hamilton G, Joshi N (2016) Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133:2050–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian YJ, Wang YH, Xiao AJ, Li PL, Guo J, Wang TJ, Zhao DJ (2019) Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. Artif Cells Nanomed Biotechnol 47:1730–1737

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Yang Z, Wu J, Zhang L, Lee S, Shin DJ, Tran M, Wang L (2018) Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 67:1768–1783

    Article  CAS  PubMed  Google Scholar 

  29. Long X, Song K, Hu H, Tian Q, Wang W, Dong Q, Yin X, Di W (2019) Long non-coding RNA GAS5 inhibits DDP-resistance and tumor progression of epithelial ovarian cancer via GAS5-E2F4-PARP1-MAPK axis. J Exp Clin Cancer Res 38:345

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajput SK, Kumar P, Roy B, Verma A, Pandey HP, Singh D, De S, Datta TK (2013) Identification of some unknown transcripts from SSH cDNA library of buffalo follicular oocytes. Animal 4:446–454

    Article  Google Scholar 

  31. Dholpuria S, Kumar M, Kumar S, Sarwalia P, Rajput S, Kumar R, De S, Datta TK (2017) Differential expression of newly identified long intergenic non-coding RNAs in buffalo oocytes indicating their possible role in maturation and embryonic development. J Cell Biochem 118:1712–1721

    Article  CAS  PubMed  Google Scholar 

  32. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  33. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 36:345–349

    Article  Google Scholar 

  34. Bettegowda A, Patel OV, Ireland JJ, Smith GW (2006) Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol Reprod Dev 73:267–278

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  36. Jones GM, Cram DS, Song B, Magli MC, Gianaroli L, Lacham-Kaplan O, Findlay JK, Jenkin G, Trounson AO (2008) Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod 23:1138–1144

    Article  CAS  PubMed  Google Scholar 

  37. Bassim S, Tanguy A, Genard B, Moraga D, Tremblay R (2014) Identification of Mytilus edulis genetic regulators during early development. Gene 551:65–78

    Article  CAS  PubMed  Google Scholar 

  38. Hsiao SJ, Poitras MF, Cook BD, Liu Y, Smith S (2006) Tankyrase 2 poly (ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol Cell Biol 26:2044–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mustafi D, Kevany BM, Bai X, Maeda T, Sears JE, Khalil AM, Palczewski K (2013) Evolutionarily conserved long intergenic non-coding RNAs in the eye. Hum Mol Genet 22:2992–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, Zhang D, Han T, Yang CS, Cunningham TJ, Head SR (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lewitus E, Huttner WB (2015) Neurodevelopmental LincRNA microsyteny conservation and mammalian brain size evolution. PLoS ONE 10:0131818

    Article  Google Scholar 

  42. Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N, Takata R, Akamatsu S, Kawaguchi T, Morizono T, Tsunoda T (2011) Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 102:245–252

    Article  CAS  PubMed  Google Scholar 

  43. Niazi F, Valadkhan S (2012) Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. RNA 18:825–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morrison TA, Wilcox I, Luo HY, Farrell JJ, Kurita R, Nakamura Y, Murphy GJ, Cui S, Steinberg MH, Chui DH (2018) A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells Mol Dis 69:1–9

    Article  CAS  PubMed  Google Scholar 

  45. Elkouris M, Kouroupi G, Vourvoukelis A, Papagiannakis N, Kaltezioti V, Matsas R, Stefanis L, Xilouri M, Politis PK (2019) Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci 13:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akerman I, Tu Z, Beucher A, Rolando DM, Sauty-Colace C, Benazra M, Nakic N, Yang J, Wang H, Pasquali L, Moran I (2017) Human pancreatic β cell lncRNAs control cell-specific regulatory networks. Cell Metab 25:400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Svoboda P (2017) Long and small noncoding RNAs during oocyte-to-embryo transition in mammals. Biochem Soc Trans 45:1117–1124

    Article  CAS  PubMed  Google Scholar 

  48. Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17:756–770

    Article  CAS  PubMed  Google Scholar 

  49. Gudenas BL, Wang L (2018) Prediction of LncRNA subcellular localization with deep learning from sequence features. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  50. Cheng L, Leung KS (2018) Quantification of non-coding RNA target localization diversity and its application in cancers. J Mol Cell Biol 10:130–138

    Article  CAS  PubMed  Google Scholar 

  51. Yang CX, Wang PC, Liu S, Miao JK, Liu XM, Miao YL, Du ZQ (2020) Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. J Cell Physiol 235(11):8304–8318

    Article  CAS  PubMed  Google Scholar 

  52. Wang JJ, Niu MH, Zhang T, Shen W, Cao HG (2020) Genome-wide network of lncRNA-mRNA during ovine oocyte development from germinal vesicle to metaphase II in vitro. Front Physiol 11:1019

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, De W, Wang C, Ji G (2017) LincRNA FEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-mediated H3K4me2 demethylation. Mol Cancer 16:1–16

    Article  Google Scholar 

  54. Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S, Gruarin P, Provasi E, Sugliano E, Marconi M, De Francesco R (2015) The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 16:318–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang R, Zhang G, Wang YC, Mei X, Chen SY (2017) The long non-coding RNA GAS5 regulates transforming growth factor β (TGF-β)-induced smooth muscle cell differentiation via RNA Smad-binding elements. J Biol Chem 292:14270–14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan JY, Smith AAT, da Silva MF, Matthey-Doret C, Rueedi R, Sönmez R, Ding D, Kutalik Z, Bergmann S, Marques AC (2017) Cis-acting complex-trait-associated lincRNA expression correlates with modulation of chromosomal architecture. Cell Rep 18:2280–2288

    Article  CAS  PubMed  Google Scholar 

  57. Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 17:135–143

    Article  CAS  PubMed  Google Scholar 

  58. Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111:1002–1007

    Article  CAS  PubMed  Google Scholar 

  59. Xue Z, Zhang Z, Liu H, Li W, Guo X, Zhang Z, Liu Y, Jia L, Li Y, Ren Y, Yang H (2019) lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 26:130–145

    Article  CAS  PubMed  Google Scholar 

  60. Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, Li J, Wang Y, Lei W, Dong N, Shen Z (2018) Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther 25:511–523

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Yao L, Liu Y, Zhu P (2018) LncTIC1 interacts with β-catenin to drive liver TIC self-renewal and liver tumorigenesis. Cancer Lett 430:88–96

    Article  CAS  PubMed  Google Scholar 

  62. Hao K, Lei W, Wu H, Wu J, Yang Z, Yan S, Lu XA, Li J, Xia X, Han X, Deng W (2019) LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction. Theranostics 9:7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SD acknowledge NDRI, Karnal for providing infrastructure and facility and Council of Scientific and Industrial Research (CSIR), Govt. of India for his JRF and SRF Grant.

Funding

This work was supported by the National Fund under Grant No. NF2049/3040 of Indian Council of Agricultural Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

SD performed experiments, interpreted results and wrote the manuscript, SK in data interpretation and manuscript revision, MK helped in real time expression study and result analysis, PS in data interpretation, RK provided vital inputs to this study, TKD conceived the work, designed, supervised the final manuscript.

Corresponding authors

Correspondence to Sunny Dholpuria or Tirtha Kumar Datta.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dholpuria, S., Kumar, S., Kumar, M. et al. A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence. Mol Biol Rep 48, 3925–3934 (2021). https://doi.org/10.1007/s11033-021-06388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06388-9

Keywords

Navigation