Skip to main content

Advertisement

Log in

Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest in the endocannabinoid system and has contributed to the understanding of the role of the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoids, and the critical role of cannabinoid receptor signaling in neurodegeneration and other inflammatory responses such as gut, joint and skin inflammation. This review also discusses the potential of endocannabinoid pathways as drug targets in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found much clearly points to a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has proven promising in several preclinical and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Cassano et al. [65])

Fig. 4

Adapted from Mlost et al. [100])

Similar content being viewed by others

References

  1. McCoy KL (2016) Interaction between cannabinoid system and toll-like receptors controls inflammation. Mediators Inflamm 2016:5831315. https://doi.org/10.1155/2016/5831315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turcotte C, Blanchet MR, Laviolette M, Flamand N (2016) The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 73(23):4449–4470. https://doi.org/10.1007/s00018-016-2300-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. https://doi.org/10.1038/365061a0

    Article  CAS  PubMed  Google Scholar 

  4. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61. https://doi.org/10.1111/j.1432-1033.1995.tb20780.x

    Article  PubMed  Google Scholar 

  5. Lu HC, Mackie K (2009) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79(7):516–525. https://doi.org/10.1016/j.biopsych.2015.07.028

    Article  CAS  Google Scholar 

  6. Ligresti A, Petrosino S, Di Marzo V (2009) From endocannabinoid profiling to ‘endocannabinoid therapeutics.’ Curr Opin Chem Biol 13(3):321–331. https://doi.org/10.1016/j.cbpa.2009.04.615

    Article  CAS  PubMed  Google Scholar 

  7. Uddin MS, Mamun AA, Sumsuzzman DM, Ashraf GM, Perveen A, Bungau SG, Mousa SA, El-Seedi HR, Bin-Jumah MN, Abdel-Daim MM (2020) Emerging promise of cannabinoids for the management of pain and associated neuropathological alterations in Alzheimer’s disease. Front Pharmacol 11:1097. https://doi.org/10.3389/fphar.2020.01097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng J, Li X, Cheng Y, Ke B, Wang R (2019) Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway. Int J Clin Exp Pathol 12(11):4096–4105

    PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Yuan Z, Liu Y, Xue J, Tian Y, Liu W, Zhang W, Shen Y, Xu W, Liang X, Chen T (2010) Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 55(3):292–298. https://doi.org/10.1097/FJC.0b013e3181d2644d

    Article  CAS  PubMed  Google Scholar 

  10. Argenziano M, Tortora C, Bellini G, Di Paola A, Punzo F, Rossi F (2019) The endocannabinoid system in pediatric inflammatory and immune diseases. Int J Mol Sci 20(23):5875. https://doi.org/10.3390/ijms20235875.Erratum.In:IntJMolSci21(8) (PMID: 31771129)

    Article  CAS  PubMed Central  Google Scholar 

  11. Bie B, Wu J, Foss JF, Naguib M (2018) An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 31(4):407–414. https://doi.org/10.1097/ACO.0000000000000616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrie N, Manolios N (2017) The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. Eur J Rheumatol 4(3):210–218. https://doi.org/10.5152/eurjrheum.2017.17025

    Article  PubMed  PubMed Central  Google Scholar 

  13. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558. https://doi.org/10.1146/annurev-neuro-062111-150420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949. https://doi.org/10.1126/science.1470919

    Article  CAS  PubMed  Google Scholar 

  15. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90. https://doi.org/10.1016/0006-2952(95)00109-d

    Article  CAS  PubMed  Google Scholar 

  16. Monteleone AM, Di Marzo V, Aveta T, Piscitelli F, Dalle Grave R, Scognamiglio P, El Ghoch M, Calugi S, Monteleone P, Maj M (2015) Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. Am J Clin Nutr 101(2):262–269. https://doi.org/10.3945/ajcn.114.096164

    Article  CAS  PubMed  Google Scholar 

  17. Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku K (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275(1):605–12. https://doi.org/10.1074/jbc.275.1.605

    Article  CAS  PubMed  Google Scholar 

  18. Sharkey KA, Wiley JW (2016) The role of the endocannabinoid system in the brain–gut axis. Gastroenterology 151(2):252–266. https://doi.org/10.1053/j.gastro.2016.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372(6507):686–691. https://doi.org/10.1038/372686a0

    Article  PubMed  Google Scholar 

  20. Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J Biol Chem 281(36):26465–26472. https://doi.org/10.1074/jbc.M604660200

    Article  CAS  PubMed  Google Scholar 

  21. Simon GM, Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 283(14):9341–9349. https://doi.org/10.1074/jbc.M707807200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blankman JL, Cravatt BF (2013) Chemical probes of endocannabinoid metabolism. Pharmacol Rev 65(2):849–871. https://doi.org/10.1124/pr.112.006387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388(6644):773–778. https://doi.org/10.1038/42015

    Article  CAS  PubMed  Google Scholar 

  24. Min R, Di Marzo V, Mansvelder HD (2010) DAG lipase involvement in depolarization-induced suppression of inhibition: does endocannabinoid biosynthesis always meet the demand? Neuroscientist 16(6):608–613. https://doi.org/10.1177/1073858410373281

    Article  CAS  PubMed  Google Scholar 

  25. Alger BE, Kim J (2011) Supply and demand for endocannabinoids. Trends Neurosci 34(6):304–315. https://doi.org/10.1016/j.tins.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burstein SH, Zurier RB (2009) Cannabinoids, endocannabinoids, and related analogs in inflammation. AAPS J 11(1):109–119. https://doi.org/10.1208/s12248-009-9084-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14(12):1347–1356. https://doi.org/10.1016/j.chembiol.2007.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S (2014) Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 35(7):358–367. https://doi.org/10.1016/j.tips.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alhouayek M, Muccioli GG (2014) COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 35(6):284–292. https://doi.org/10.1016/j.tips.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Ueda N (2009) Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat 89(3–4):112–119. https://doi.org/10.1016/j.prostaglandins.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  31. Martin WJ, Patrick SL, Coffin PO, Tsou K, Walker JM (1995) An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci 56(23–24):2103–2109. https://doi.org/10.1016/0024-3205(95)00195-c

    Article  CAS  PubMed  Google Scholar 

  32. Trautmann SM, Sharkey KA (2015) The endocannabinoid system and its role in regulating the intrinsic neural circuitry of the gastrointestinal tract. Int Rev Neurobiol 125:85–126. https://doi.org/10.1016/bs.irn.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  33. Wright KL, Duncan M, Sharkey KA (2008) Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153(2):263–270. https://doi.org/10.1038/sj.bjp.0707486

    Article  CAS  PubMed  Google Scholar 

  34. Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP Jr (2003) Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 100(18):10529–10533. https://doi.org/10.1073/pnas.1834309100

    Article  CAS  PubMed  Google Scholar 

  35. Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH (2018) The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology 43(1):52–79. https://doi.org/10.1038/npp.2017.204

    Article  CAS  PubMed  Google Scholar 

  36. Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5(5):400–411. https://doi.org/10.1038/nri1602

    Article  CAS  PubMed  Google Scholar 

  37. Cabral GA, Griffin-Thomas L (2009) Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 11:e3. https://doi.org/10.1017/S1462399409000957

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sancho R, Calzado MA, Di Marzo V, Appendino G, Muñoz E (2003) Anandamide inhibits nuclear factor-kappaB activation through a cannabinoid receptor-independent pathway. Mol Pharmacol 63(2):429–438. https://doi.org/10.1124/mol.63.2.429

    Article  CAS  PubMed  Google Scholar 

  39. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49(1):67–79. https://doi.org/10.1016/j.neuron.2005.11.027

    Article  CAS  PubMed  Google Scholar 

  40. Klein TW, Newton CA, Widen R, Friedman H (1985) The effect of delta-9-tetrahydrocannabinol and 11-hydroxy-delta-9-tetrahydrocannabinol on T-lymphocyte and B-lymphocyte mitogen responses. J Immunopharmacol 7(4):451–466. https://doi.org/10.3109/08923978509026487

    Article  CAS  PubMed  Google Scholar 

  41. Berdyshev EV, Boichot E, Germain N, Allain N, Anger JP, Lagente V (1997) Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 330(2–3):231–240. https://doi.org/10.1016/s0014-2999(97)01007-8

    Article  CAS  PubMed  Google Scholar 

  42. Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81(4):715–723. https://doi.org/10.1002/jcb.1103

    Article  CAS  PubMed  Google Scholar 

  43. Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD (2002) Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133(1–2):124–131. https://doi.org/10.1016/s0165-5728(02)00370-3

    Article  CAS  PubMed  Google Scholar 

  44. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1(7):1333–1349. https://doi.org/10.4155/fmc.09.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sacerdote P, Massi P, Panerai AE, Parolaro D (2000) In vivo and in vitro treatment with the synthetic cannabinoid CP55, 940 decreases the in vitro migration of macrophages in the rat: involvement of both CB1 and CB2 receptors. J Neuroimmunol 109(2):155–163. https://doi.org/10.1016/S0165-5728(00)00307-6

    Article  CAS  PubMed  Google Scholar 

  46. Klein TW, Cabral GA (2006) Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol 1(1):50–64. https://doi.org/10.1007/s11481-005-9007-x

    Article  PubMed  Google Scholar 

  47. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS (2002) Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J Pharmacol Exp Ther 302(2):451–465. https://doi.org/10.1124/jpet.102.033506

    Article  CAS  PubMed  Google Scholar 

  48. Romero-Sandoval EA, Horvath RJ, DeLeo JA (2008) Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 9(7):726–34 (PMID: 18600578; PMCID: PMC2696046)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Villacampa N, Heneka MT (2018) Microglia: you’ll never walk alone! Immunity 48(2):195–197. https://doi.org/10.1016/j.immuni.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz M, Butovsky O, Brück W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74. https://doi.org/10.1016/j.tins.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H (2003) Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 26(6):297–302. https://doi.org/10.1016/S0166-2236(03)00126-7

    Article  CAS  PubMed  Google Scholar 

  52. Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 5(2):73–80. https://doi.org/10.2174/157015907780866884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29(9):518–527. https://doi.org/10.1016/j.tins.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  54. Tremblay MÈ, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4(2):220–222. https://doi.org/10.4161/cib.4.2.14506

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schafer DP, Stevens B (2013) Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 23(6):1034–1040. https://doi.org/10.1016/j.conb.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  57. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217. https://doi.org/10.1016/j.tins.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  58. Naguib M, Xu JJ, Diaz P, Brown DL, Cogdell D, Bie B, Hu J, Craig S, Hittelman WN (2012) Prevention of paclitaxel-induced neuropathy through activation of the central cannabinoid type 2 receptor system. Anesth Analg 114(5):1104–1120. https://doi.org/10.1213/ANE.0b013e31824b0191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25(8):1904–1913. https://doi.org/10.1523/JNEUROSCI.4540-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Benito C, Tolón RM, Castillo AI, Ruiz-Valdepenas L, Martinez-Orgado JA, Fernandez-Sanchez FJ, Vazquez C, Cravatt BF, Romero J (2012) β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB1 or CB2 receptors. Br J Pharmacol 166(4):1474–1489. https://doi.org/10.1111/j.1476-5381.2012.01889.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin K, Xie L, Kim SH, Parmentier-Batteur S, Sun Y, Mao XO, Childs J, Greenberg DA (2004) Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. Mol Pharmacol 66(2):204–208. https://doi.org/10.1124/mol.66.2.204

    Article  CAS  PubMed  Google Scholar 

  62. Cabral GA, Marciano-Cabral F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78(6):1192–1197. https://doi.org/10.1189/jlb.0405216

    Article  CAS  PubMed  Google Scholar 

  63. Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29. https://doi.org/10.1186/1742-2094-2-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rossi S, Bozzali M, Bari M, Mori F, Studer V, Motta C, Buttari F, Cercignani M, Gravina P, Mastrangelo N, Castelli M, Mancino R, Nucci C, Sottile F, Bernardini S, Maccarrone M, Centonze D (2013) Association between a genetic variant of type-1 cannabinoid receptor and inflammatory neurodegeneration in multiple sclerosis. PLoS One 8(12):e82848. https://doi.org/10.1371/journal.pone.0082848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cassano T, Calcagnini S, Pace L, De Marco F, Romano A, Gaetani S (2017) Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front Neurosci 11:30. https://doi.org/10.3389/fnins.2017.00030

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grill M, Hasenoehrl C, Storr M, Schicho R (2018) Medical cannabis and cannabinoids: an option for the treatment of inflammatory bowel disease and cancer of the colon? Med Cannabis Cannabinoids 1(1):28–35. https://doi.org/10.1159/000489036

    Article  Google Scholar 

  67. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105(7):2699–2704. https://doi.org/10.1073/pnas.0711278105

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sibaev A, Yüce B, Kemmer M, Nassauw LV, Broedl U, Allescher HD, Göke B, Timmermans JP, Storr M (2009) Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. Am J Physiol-Gastrointestinal Liver Physiol 296(1):G119–G128. https://doi.org/10.1152/ajpgi.90274.2008

    Article  CAS  Google Scholar 

  69. Schmöle AC, Lundt R, Gennequin B et al (2015) Correction: expression analysis of CB2-GFP BAC transgenic mice. PLoS One 10(12):e0145472. https://doi.org/10.1371/journal.pone.0145472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A (2016) Endocannabinoids–at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 12(3):133–143. https://doi.org/10.1038/nrendo.2015.211

    Article  CAS  PubMed  Google Scholar 

  71. Karwad MA, Couch DG, Theophilidou E, Sarmad S, Barrett DA, Larvin M, Wright KL, Lund JN, O’Sullivan SE (2017) The role of CB1 in intestinal permeability and inflammation. FASEB J 31(8):3267–3277. https://doi.org/10.1096/fj.201601346R

    Article  CAS  PubMed  Google Scholar 

  72. Acharya N, Penukonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK (2017) Endocannabinoid system acts as a regulator of immune homeostasis in the gut. PNAS 114(19):5005–5010. https://doi.org/10.1073/pnas.1612177114

    Article  CAS  PubMed  Google Scholar 

  73. Di Sabatino A, Battista N, Biancheri P, Rapino C, Rovedatti L, Astarita G, Vanoli A, Dainese E, Guerci M, Piomelli D, Pender SL, MacDonald TT, Maccarrone M, Corazza GR (2011) The endogenous cannabinoid system in the gut of patients with inflammatory bowel disease. Mucosal Immunol 4(5):574–583. https://doi.org/10.1038/mi.2011.18

    Article  CAS  PubMed  Google Scholar 

  74. Chen L, Chen H, Li Y, Li L, Qiu Y, Ren J (2015) Endocannabinoid and ceramide levels are altered in patients with colorectal cancer. Oncol Rep 34(1):447–454. https://doi.org/10.3892/or.2015.3973

    Article  CAS  PubMed  Google Scholar 

  75. Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113(8):1202–1209. https://doi.org/10.1172/JCI19465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. D’Argenio G, Valenti M, Scaglione G, Cosenza V, Sorrentini I, Di Marzo V (2006) Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 20(3):568–570. https://doi.org/10.1096/fj.05-4943fje

    Article  CAS  PubMed  Google Scholar 

  77. Kimball ES, Schneider CR, Wallace NH, Hornby PJ (2006) Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 291(2):G364–G371. https://doi.org/10.1152/ajpgi.00407.2005

    Article  CAS  PubMed  Google Scholar 

  78. Storr MA, Keenan CM, Zhang H, Patel KD, Makriyannis A, Sharkey KA (2009) Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15(11):1678–1685. https://doi.org/10.1002/ibd.20960

    Article  PubMed  PubMed Central  Google Scholar 

  79. Storr MA, Keenan CM, Emmerdinger D, Zhang H, Yüce B, Sibaev A, Massa F, Buckley NE, Lutz B, Göke B, Brand S, Patel KD, Sharkey KA (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med (Berl) 86(8):925–936. https://doi.org/10.1007/s00109-008-0359-6

    Article  CAS  Google Scholar 

  80. Pagano E, Capasso R, Piscitelli F, Romano B, Parisi OA, Finizio S, Lauritano A, Marzo VD, Izzo AA, Borrelli F (2016) An orally active cannabis extract with high content in cannabidiol attenuates chemically-induced intestinal inflammation and hypermotility in the mouse. Front Pharmacol 7:341. https://doi.org/10.3389/fphar.2016.00341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shamran H, Singh NP, Zumbrun EE et al (2017) Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav Immun 59:10–20. https://doi.org/10.1016/j.bbi.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  82. Zhao X, Liang P, Liu J, Jiang H, Fan X, Chen G, Zhou C (2017) Elevation of arachidonoylethanolamide levels by activation of the endocannabinoid system protects against colitis and ameliorates remote organ lesions in mice. Exp Ther Med 14(6):5664–5670. https://doi.org/10.3892/etm.2017.5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jamontt JM, Molleman A, Pertwee RG, Parsons ME (2010) The effects of Delta-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. Br J Pharmacol 160(3):712–723. https://doi.org/10.1111/j.1476-5381.2010.00791.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101. https://doi.org/10.1038/sj.bjp.0707460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Filippis D, Esposito G, Cirillo C, Cipriano M, De Winter BY, Scuderi C, Sarnelli G, Cuomo R, Steardo L, De Man JG, Iuvone T (2011) Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS ONE 6(12):e28159. https://doi.org/10.1371/journal.pone.0028159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163(7):1479–1494. https://doi.org/10.1111/j.1476-5381.2010.01166.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Borrelli F, Aviello G, Romano B, Orlando P, Capasso R, Maiello F, Guadagno F, Petrosino S, Capasso F, Di Marzo V, Izzo AA (2009) Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J Mol Med (Berl) 87(11):1111–1121. https://doi.org/10.1007/s00109-009-0512-x

    Article  CAS  Google Scholar 

  88. Schicho R, Bashashati M, Bawa M, McHugh D, Saur D, Hu HM, Zimmer A, Lutz B, Mackie K, Bradshaw HB, McCafferty DM, Sharkey KA, Storr M (2011) The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm Bowel Dis 17(8):1651–1664. https://doi.org/10.1002/ibd.21538

    Article  PubMed  Google Scholar 

  89. Leinwand KL, Jones AA, Huang RH, Jedlicka P, Kao DJ, de Zoeten EF, Ghosh S, Moaddel R, Wehkamp J, Ostaff MJ, Bader J, Aherne CM, Collins CB (2017) Cannabinoid receptor-2 ameliorates inflammation in murine model of crohn’s disease. J Crohns Colitis 11(11):1369–1380. https://doi.org/10.1093/ecco-jcc/jjx096

    Article  PubMed  PubMed Central  Google Scholar 

  90. Soethoudt M, Grether U, Fingerle J et al (2017) Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 8:13958. https://doi.org/10.1038/ncomms13958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Borrelli F, Fasolino I, Romano B, Capasso R, Maiello F, Coppola D, Orlando P, Battista G, Pagano E, Di Marzo V, Izzo AA (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85(9):1306–1316. https://doi.org/10.1016/j.bcp.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  92. Romano B, Borrelli F, Fasolino I, Capasso R, Piscitelli F, Cascio M, Pertwee R, Coppola D, Vassallo L, Orlando P, Di Marzo V, Izzo A (2013) The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br J Pharmacol 169(1):213–229. https://doi.org/10.1111/bph.12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng YJ, Li YY, Lin XH, Li K, Cao MH (2016) Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK. World J Gastroenterol 22(43):9515–9524. https://doi.org/10.3748/wjg.v22.i43.9515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin S, Li Y, Shen L, Zhang R, Yang L, Li M, Li K, Fichna J (2017) The anti-inflammatory effect and intestinal barrier protection of HU210 differentially depend on TLR4 signaling in dextran sulfate sodium-induced murine colitis. Dig Dis Sci 62(2):372–386. https://doi.org/10.1007/s10620-016-4404-y

    Article  CAS  PubMed  Google Scholar 

  95. Borrelli F, Romano B, Petrosino S, Pagano E, Capasso R, Coppola D, Battista G, Orlando P, Di Marzo V, Izzo AA (2015) Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br J Pharmacol 172(1):142–158. https://doi.org/10.1111/bph.12907

    Article  CAS  PubMed  Google Scholar 

  96. Rosa AC, Fantozzi R (2013) The role of histamine in neurogenic inflammation. Br J Pharmacol 170(1):38–45. https://doi.org/10.1111/bph.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bánvölgyi A, Pozsgai G, Brain SD, Helyes ZS, Szolcsányi J, Ghosh M, Melegh B, Pintér E (2004) Mustard oil induces a transient receptor potential vanilloid 1 receptor-independent neurogenic inflammation and a non-neurogenic cellular inflammatory component in mice. Neuroscience 125(2):449–459. https://doi.org/10.1016/j.neuroscience.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  98. Heppelmann B, Pawlak M (1997) Sensitisation of articular afferents in normal and inflamed knee joints by substance P in the rat. Neurosci Lett 223(2):97–100. https://doi.org/10.1016/S0304-3940(97)13408-5

    Article  CAS  PubMed  Google Scholar 

  99. Raychaudhuri SP, Raychaudhuri SK, Atkuri KR, Herzenberg LA, Herzenberg LA (2011) Nerve growth factor: a key local regulator in the pathogenesis of inflammatory arthritis. Arthritis Rheum 63(11):3243–3252. https://doi.org/10.1002/art.30564

    Article  CAS  PubMed  Google Scholar 

  100. Mlost J, Kostrzewa M, Malek N, Starowicz K (2018) Molecular understanding of the activation of CB1 and blockade of TRPV1 receptors: implications for novel treatment strategies in osteoarthritis. Int J Mol Sci 19(2):342. https://doi.org/10.3390/ijms19020342

    Article  CAS  PubMed Central  Google Scholar 

  101. Ahluwalia J, Urban L, Bevan S, Nagy I (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17(12):2611–2618. https://doi.org/10.1046/j.1460-9568.2003.02703.x

    Article  PubMed  Google Scholar 

  102. Starowicz K, Makuch W, Korostynski M, Malek N, Slezak M, Zychowska M, Petrosino S, De Petrocellis L, Cristino L, Przewlocka B, Di Marzo V (2013) Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism. PLoS One 8(4):e60040. https://doi.org/10.1371/journal.pone.0060040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hermann H, De Petrocellis L, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V (2003) Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci 60(3):607–616. https://doi.org/10.1007/s000180300052

    Article  CAS  PubMed  Google Scholar 

  104. Maione S, Bisogno T, de Novellis V, Palazzo E, Cristino L, Valenti M, Petrosino S, Guglielmotti V, Rossi F, Di Marzo V (2006) Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J Pharmacol Exp Ther 316(3):969–982. https://doi.org/10.1124/jpet.105.093286

    Article  CAS  PubMed  Google Scholar 

  105. Scheau C, Badarau IA, Mihai LG, Scheau AE, Costache DO, Constantin C, Calina D, Caruntu C, Costache RS, Caruntu A (2020) Cannabinoids in the pathophysiology of skin inflammation. Molecules 25(3):652. https://doi.org/10.3390/molecules25030652

    Article  CAS  PubMed Central  Google Scholar 

  106. Sanclemente G, Burgos C, Nova J, Hernández F, González C, Reyes MI, Córdoba N, Arévalo Á, Meléndez E, Colmenares J, Ariza S, Hernández G, Asociación Colombiana de Dermatología y Cirugía Dermatológica (Asocolderma) (2017) The impact of skin diseases on quality of life: a multicenter study. Actas Dermosifiliogr 108(3):244–252. https://doi.org/10.1016/j.ad.2016.11.008 (English, Spanish)

    Article  CAS  PubMed  Google Scholar 

  107. Chovatiya R, Silverberg JI (2019) Pathophysiology of atopic dermatitis and psoriasis: implications for management in children. Children (Basel) 6(10):108. https://doi.org/10.3390/children6100108

    Article  Google Scholar 

  108. Huestis MA (2007) Human cannabinoid pharmacokinetics. Chem Biodivers 4(8):1770–1804. https://doi.org/10.1002/cbdv.200790152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaplan DH, Igyártó BZ, Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12(2):114–124. https://doi.org/10.1038/nri3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Novak-Bilić G, Vučić M, Japundžić I, Meštrović-Štefekov J, Stanić-Duktaj S, Lugović-Mihić L (2018) Irritant and allergic contact dermatitis - skin lesion characteristics. Acta Clin Croat 57(4):713–720. https://doi.org/10.20471/acc.2018.57.04.13

    Article  PubMed  PubMed Central  Google Scholar 

  111. Petrosino S, Verde R, Vaia M, Allarà M, Iuvone T, Di Marzo V (2018) Anti-inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis. J Pharmacol Exp Ther 365(3):652–663. https://doi.org/10.1124/jpet.117.244368

    Article  CAS  PubMed  Google Scholar 

  112. Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z (2015) Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 12:52. https://doi.org/10.1186/s12974-015-0273-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harvey BS, Sia TC, Wattchow DA, Smid SD (2014) Interleukin 17A evoked mucosal damage is attenuated by cannabidiol and anandamide in a human colonic explant model. Cytokine 65(2):236–244. https://doi.org/10.1016/j.cyto.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  114. Kim HJ, Kim B, Park BM, Jeon JE, Lee SH, Mann S, Ahn SK, Hong SP, Jeong SK (2015) Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int J Dermatol 54(10):e401–e408. https://doi.org/10.1111/ijd.12841

    Article  CAS  PubMed  Google Scholar 

  115. Gaffal E, Cron M, Glodde N, Tüting T (2013) Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy 68(8):994–1000. https://doi.org/10.1111/all.12183

    Article  CAS  PubMed  Google Scholar 

  116. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol 178(1):19–25. https://doi.org/10.1016/j.ajpath.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luo XQ, Li A, Yang X, Xiao X, Hu R, Wang TW, Dou XY, Yang DJ, Dong Z (2018) Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin Med 13:14. https://doi.org/10.1186/s13020-018-0173-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li SS, Wang LL, Liu M, Jiang SK, Zhang M, Tian ZL, Wang M, Li JY, Zhao R, Guan DW (2016) Cannabinoid CB2 receptors are involved in the regulation of fibrogenesis during skin wound repair in mice. Mol Med Rep 13(4):3441–3450. https://doi.org/10.3892/mmr.2016.4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang LL, Zhao R, Li JY, Li SS, Liu M, Wang M, Zhang MZ, Dong WW, Jiang SK, Zhang M, Tian ZL, Liu CS, Guan DW (2016) Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol 786:128–136. https://doi.org/10.1016/j.ejphar.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  121. Tang M, Cao X, Zhang K et al (2018) Celastrol alleviates renal fibrosis by upregulating cannabinoid receptor 2 expression. Cell Death Dis 9(6):1–12

    Article  Google Scholar 

  122. He C, Ryan AJ, Murthy S, Carter AB (2013) Accelerated development of pulmonary fibrosis via Cu, Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem 288(28):20745–20757. https://doi.org/10.1074/jbc.M112.410720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Duru N, Wolfson B, Zhou Q (2016) Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World J Biol Chem 7(4):231–239. https://doi.org/10.4331/wjbc.v7.i4.231

    Article  PubMed  PubMed Central  Google Scholar 

  124. Braun M, Khan ZT, Khan MB, Kumar M, Ward A, Achyut BR, Arbab AS, Hess DC, Hoda MN, Baban B, Dhandapani KM, Vaibhav K (2018) Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization. Brain Behav Immun 68:224–237. https://doi.org/10.1016/j.bbi.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  125. Sheriff T, Lin MJ, Dubin D, Khorasani H (2020) The potential role of cannabinoids in dermatology. J Dermatolog Treat 31(8):839–845. https://doi.org/10.1080/09546634.2019.1675854

    Article  CAS  PubMed  Google Scholar 

  126. Wilkinson JD, Williamson EM (2007) Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci 45(2):87–92. https://doi.org/10.1016/j.jdermsci.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  127. Ramot Y, Sugawara K, Zákány N, Tóth BI, Bíró T, Paus R (2013) A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. PeerJ 1:e40. https://doi.org/10.7717/peerj.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Changoer L, Anastassov G (2019) Method to treat psoriasis US Patent Application No. 16/106,420.

  129. Du AX, Osman M, Gniadecki R (2020) Use of extracorporeal photopheresis in scleroderma: a review. Dermatology 236(2):105–110. https://doi.org/10.1159/000501591

    Article  CAS  PubMed  Google Scholar 

  130. del Río C, Navarrete C, Collado JA, Bellido ML, Gómez-Cañas M, Pazos MR, Fernández-Ruiz J, Pollastro F, Appendino G, Calzado MA, Cantarero I, Muñoz E (2016) The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep 6:21703. https://doi.org/10.1038/srep21703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Burstein SH (2018) Ajulemic acid: potential treatment for chronic inflammation. Pharmacol Res Perspect 6(2):e00394. https://doi.org/10.1002/prp2.394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Man A, Correa JK, Ziemek J, Simms RW, Felson DT, Lafyatis R (2017) Development and validation of a patient-reported outcome instrument for skin involvement in patients with systemic sclerosis. Ann Rheum Dis 76(8):1374–1380. https://doi.org/10.1136/annrheumdis-2016-210534

    Article  PubMed  Google Scholar 

  133. Spiera RF, Hummers LK, Chung L, et al (2017) A phase 2 study of safety and efficacy of anabasum (JBT-101), a cannabinoid receptor type 2 agonist, in diffuse cutaneous systemic sclerosis. Arthritis & Rheumatology 69.

  134. Martyanov V, Nesbeth Y, Cai G, et al (2017) Effect of anabasum (JBT-101) on gene expression in skin biopsies from subjects with diffuse cutaneous systemic sclerosis (dcSSc) and the relationship of baseline molecular subsets to clinical benefit in the phase 2 trial. Arthritis & Rheumatology 69.

  135. Ali A, Akhtar N (2015) The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak J Pharm Sci 28(4):1389–1395

    CAS  PubMed  Google Scholar 

  136. Dobrosi N, Tóth BI, Nagy G, Dózsa A, Géczy T, Nagy L, Zouboulis CC, Paus R, Kovács L, Bíró T (2008) Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J 22(10):3685–3695. https://doi.org/10.1096/fj.07-104877

    Article  CAS  PubMed  Google Scholar 

  137. Oláh A, Markovics A, Szabó-Papp J, Szabó PT, Stott C, Zouboulis CC, Bíró T (2016) Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Exp Dermatol 25(9):701–707. https://doi.org/10.1111/exd.13042

    Article  CAS  PubMed  Google Scholar 

  138. Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L, Kloepper J, Camera E, Ludovici M, Picardo M, Voets T, Zouboulis CC, Paus R, Bíró T (2014) Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J Clin Invest 124(9):3713–3724. https://doi.org/10.1172/JCI64628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Petrocellis L, Orlando P, Moriello AS, Aviello G, Stott C, Izzo AA, Di Marzo V (2012) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol (Oxf) 204(2):255–266. https://doi.org/10.1111/j.1748-1716.2011.02338.x

    Article  CAS  Google Scholar 

  140. Volc-Platzer B (2015) Dermatomyositis - update [dermatomyositis-update]. Hautarzt 66(8):604–10. https://doi.org/10.1007/s00105-015-3659-0 (German)

    Article  CAS  PubMed  Google Scholar 

  141. Chen K, Zeidi M, Reddy N, White B, Werth V (2019) FRI0307 Lenabasum, A cannabinoid type 2 receptor agonist, reduces CD4 cell populations and downregulates type 1 and 2 interferon activities in lesional dermatomyositis skin. Ann Rheum Dis 78(2):835. https://doi.org/10.1136/annrheumdis-2019-eular.7759

    Article  Google Scholar 

  142. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79-84. https://doi.org/10.1007/s10875-012-9847-0

    Article  CAS  PubMed  Google Scholar 

  143. Scheau C, Badarau IA, Costache R et al (2019) The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol 2019:9423907. https://doi.org/10.1155/2019/9423907

    Article  CAS  Google Scholar 

  144. Cioni C, Tassi M, Marotta G, Mugnaini C, Corelli F, Annunziata P (2019) A novel highly selective cannabinoid CB2 agonist reduces in vitro growth and tgf-beta release of human glial cell tumors. Cent Nerv Syst Agents Med Chem 19(3):206–214. https://doi.org/10.2174/1871524919666190923154351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None declared.

Author information

Authors and Affiliations

Authors

Contributions

NO: Conceptualisation, drafting and editing of manuscript. OKY: Drafting of manuscript. AOA: Editing of manuscript.

Corresponding author

Correspondence to Newman Osafo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osafo, N., Yeboah, O.K. & Antwi, A.O. Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation. Mol Biol Rep 48, 3665–3680 (2021). https://doi.org/10.1007/s11033-021-06366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06366-1

Keywords

Navigation