Skip to main content
Log in

Heparanase modulation by Wingless/INT (Wnt)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided with reasonable request.

References

  1. Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277(19):3890–3903

    Article  CAS  PubMed  Google Scholar 

  2. Cassinelli G, Zaffaroni N, Lanzi C (2016) The heparanase/heparan sulfate proteoglycan axis: a potential new therapeutic target in sarcomas. Cancer Lett 382(2):245–254

    Article  CAS  PubMed  Google Scholar 

  3. Nasser NJ (2008) Heparanase involvement in physiology and disease. Cell Mol Life Sci 65(11):1706–1715

    Article  CAS  PubMed  Google Scholar 

  4. Li JP, Vlodavsky I (2009) Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 102(5):823–828

    CAS  PubMed  Google Scholar 

  5. Rodrigues LM, Oliveira LZ, Pinhal MA (2013) Expression of heparanase isoforms in intervertebral discs classified according to Pfirrmann grading system for disc degeneration. Spine (Phila Pa 1976) 38(13):1112–1118

    Article  Google Scholar 

  6. Vlodavsky I, Iozzo RV, Sanderson RD (2013) Heparanase: multiple functions in inflammation, diabetes and atherosclerosis. Matrix Biol 32(5):220–222

    Article  CAS  PubMed  Google Scholar 

  7. Matos LL, Suarez ER, Theodoro TR, Trufelli DC, Melo CM, Garcia LF et al (2015) The profile of heparanase expression distinguishes differentiated thyroid carcinoma from benign neoplasms. PLoS ONE 10(10):e0141139

    Article  PubMed  PubMed Central  Google Scholar 

  8. Melo CM, Origassa CS, Theodoro TR, Matos LL, Miranda TA, Accardo CM et al (2015) Analysis of heparanase isoforms and cathepsin B in the plasma of patients with gastrointestinal carcinomas: analytical cross-sectional study. Sao Paulo Med J 133(1):28–35

    Article  PubMed  Google Scholar 

  9. Morris A, Wang B, Waern I, Venkatasamy R, Page C, Schmidt EP et al (2015) The role of heparanase in pulmonary cell recruitment in response to an allergic but not non-allergic stimulus. PLoS ONE 10(6):e0127032

    Article  PubMed  PubMed Central  Google Scholar 

  10. Waisberg J, Theodoro TR, Matos LL, Orlandi FB, Serrano RL, Saba GT et al (2016) Immunohistochemical expression of heparanase isoforms and syndecan-1 proteins in colorectal adenomas. Eur J Histochem 60(1):2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Yang JM, Wang HJ, Ru GQ, Fan DM (2013) Synthesized multiple antigenic polypeptide vaccine based on B-cell epitopes of human heparanase could elicit a potent antimetastatic effect on human hepatocellular carcinoma in vivo. PLoS ONE 8(1):e52940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rivara S, Milazzo FM, Giannini G (2016) Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 8(6):647–680

    Article  CAS  PubMed  Google Scholar 

  14. Weissmann M, Arvatz G, Horowitz N, Feld S, Naroditsky I, Zhang Y et al (2016) Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci USA 113(3):704–709

    Article  CAS  PubMed  Google Scholar 

  15. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R et al (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5(7):793–802

    Article  CAS  PubMed  Google Scholar 

  16. Zetser A, Levy-Adam F, Kaplan V, Gingis-Velitski S, Bashenko Y, Schubert S et al (2004) Processing and activation of latent heparanase occurs in lysosomes. J Cell Sci 117(Pt 11):2249–2258

    Article  CAS  PubMed  Google Scholar 

  17. Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Novinec M, Lenarcic B, Turk B (2014) Cysteine cathepsin activity regulation by glycosaminoglycans. Biomed Res Int 2014:309718

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piva MB, Suarez ER, Melo CM, Cavalheiro RP, Nader HB, Pinhal MA (2015) Glycosaminoglycans affect heparanase location in CHO cell lines. Glycobiology 25(9):976–983

    Article  CAS  PubMed  Google Scholar 

  20. Kudo D, Kon A, Yoshihara S, Kakizaki I, Sasaki M, Endo M et al (2004) Effect of a hyaluronan synthase suppressor, 4-methylumbelliferone, on B16F–10 melanoma cell adhesion and locomotion. Biochem Biophys Res Commun 321(4):783–787

    Article  CAS  PubMed  Google Scholar 

  21. Yoshihara S, Kon A, Kudo D, Nakazawa H, Kakizaki I, Sasaki M et al (2005) A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett 579(12):2722–2726

    Article  CAS  PubMed  Google Scholar 

  22. Nakazawa H, Yoshihara S, Kudo D, Morohashi H, Kakizaki I, Kon A et al (2006) 4-Methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol 57(2):165–170

    Article  CAS  PubMed  Google Scholar 

  23. Bar-Ner M, Eldor A, Wasserman L, Matzner Y, Cohen IR, Fuks Z et al (1987) Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 70(2):551–557

    Article  CAS  PubMed  Google Scholar 

  24. Elkin M, Cohen I, Zcharia E, Orgel A, Guatta-Rangini Z, Peretz T et al (2003) Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res 63(24):8821–8826

    CAS  PubMed  Google Scholar 

  25. Baraz L, Haupt Y, Elkin M, Peretz T, Vlodavsky I (2006) Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25(28):3939–3947

    Article  CAS  PubMed  Google Scholar 

  26. Theodoro TR, de Matos LL, Sant Anna AV, Fonseca FL, Semedo P, Martins LC et al (2007) Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia 9(6):504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mason RW, Massey SD (1992) Surface activation of pro-cathepsin L. Biochem Biophys Res Commun 189(3):1659–1666

    Article  CAS  PubMed  Google Scholar 

  28. Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217(2):624–631

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE et al (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279(7):5470–5479

    Article  CAS  PubMed  Google Scholar 

  30. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88(6):789–799

    Article  PubMed  Google Scholar 

  31. Wuppermann FN, Hegemann JH, Jantos CA (2001) Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae. J Infect Dis 184(2):181–187

    Article  CAS  PubMed  Google Scholar 

  32. Schowalter RM, Pastrana DV, Buck CB (2011) Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog 7(7):e1002161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boucas RI, Trindade ES, Tersariol IL, Dietrich CP, Nader HB (2008) Development of an enzyme-linked immunosorbent assay (ELISA)-like fluorescence assay to investigate the interactions of glycosaminoglycans to cells. Anal Chim Acta 618(2):218–226

    Article  CAS  PubMed  Google Scholar 

  34. Melo CM, Tersariol IL, Nader HB, Pinhal MA, Lima MA (2015) Development of new methods for determining the heparanase enzymatic activity. Carbohydr Res 412:66–70

    Article  CAS  PubMed  Google Scholar 

  35. Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93(16):8455–8459

    Article  CAS  PubMed  Google Scholar 

  36. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS (1997) Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 185(1):82–91

    Article  CAS  PubMed  Google Scholar 

  37. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278(35):33067–33077

    Article  CAS  PubMed  Google Scholar 

  38. O’Connell MP, Fiori JL, Kershner EK, Frank BP, Indig FE, Taub DD et al (2009) Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells. J Biol Chem 284(42):28704–28712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ridgway LD, Wetzel MD, Marchetti D (2011) Heparanase modulates Shh and Wnt3a signaling in human medulloblastoma cells. Exp Ther Med 2(2):229–238

    Article  CAS  PubMed  Google Scholar 

  40. Fama EA, Souza RS, Melo CM, Melo Pompei L, Pinhal MA (2014) Evaluation of glycosaminoglycans and heparanase in placentas of women with preeclampsia. Clin Chim Acta 437:155–160

    Article  CAS  PubMed  Google Scholar 

  41. Colombres M, Henriquez JP, Reig GF, Scheu J, Calderon R, Alvarez A et al (2008) Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol 216(3):805–815

    Article  CAS  PubMed  Google Scholar 

  42. Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25(3):329–332

    Article  CAS  PubMed  Google Scholar 

  43. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY (2011) Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol 18(8):886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren Z, Andel H, Lau W, Hartholt RB, Maurice MM, Clevers H, Kersten MJ, Spaargaren M, Pals ST (2018) Syndecan-1 promotes Wnt/β-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood 131(9):982–994

    Article  CAS  PubMed  Google Scholar 

  45. Knelson EH, Nee JC, Blobe GC (2014) Heparan sulfate signaling in cancer. Trends Biochem Sci 39(6):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jeffrey D. Esko, University of California San Diego and Dr. Mikael Peppelenbosch, Erasmus University Rotterdam, for kindly providing the CHO cell lines and pTOPFLASH and pFOPFLASH, respectively. In addition, the authors would like to FAPESP (São Paulo Research Foundation), CNPq (National Council for Technological and Scientific Development), and CAPES (Coordination for the Improvement of Higher Education Personnel) for financial support.

Funding

The financial support was obtained from FAPESP (São Paulo Research Foundation) grant, CNPq (National Council for Technological and Scientific Development), and CAPES (Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CMM. The first draft of the manuscript was written by CMM and MASP. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Aparecida Silva Pinhal.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Consent to publish

The authors hereby consent to publication of this study.

Ethical approval

All animals were treated according to the Universidade Federal de São paulo animal welfare guidelines as described and approved by UNIFESP Committee (2214150216).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, C.M., Nader, H.B., Justo, G.Z. et al. Heparanase modulation by Wingless/INT (Wnt). Mol Biol Rep 48, 3117–3125 (2021). https://doi.org/10.1007/s11033-021-06348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06348-3

Keywords

Navigation