Skip to main content
Log in

Flavonoid 3′-hydroxylase of Camellia nitidissima Chi. promotes the synthesis of polyphenols better than flavonoids

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Camellia nitidissima Chi. is an ornamental plant of the genus Camellia L. Its flowers contain a lot of flavonoids and polyphenols. Flavonoid 3′-hydroxylase (F3′H) plays an important role in the synthesis of flavonoids, polyphenols and anthocyanins. We used PCR amplification, quantitative PCR, High-performance liquid chromatography, subcellular localization, and agrobacterium-mediated leaf disk method to study the the function of CnF3′H. The full length of CnF3′H was 1859 bp (GenBank code: HQ290518.1), with an open reading frame of 1577 bp, and encoded 518 amino acid. A phylogenetic tree analysis showed that CnF3′H was closely related to Camellia sinensis L. and C. sinensis cultivar Zhonghuang. CnF3′H was expressed in flowers, leaves, fruits, sepals, petals and stamens of C. nitidissima, and during the flowering process the expression level in flower decreased initially and then increased. CnF3′H expression was significantly positive correlated with polyphenol contents in C. nitidissima. A CnF3′H-EGFP expression vector was constructed to do the subcellular localization, we found that CnF3′H was obviously localized in the nuclear envelope and cytomembrane. In transgenic tobacco flowers, the total polyphenol content and various polyphenol constituents were significantly increased with high CnF3′H expression level, while total flavonoid contents and some flavonol constituents were increased slightly. These findings suggest that CnF3′H promotes the synthesis of polyphenols better than flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are presented in the manuscript. Camellia nitidissima Chi. tissues were collected from the National Camellia Germplasm Resource Bank (Guangxi, China).

References

  1. Zhang H, Ren S (1998) Flora of China (Theaceae). In: Zhang H (ed) Flora Reipublicae popularis Sinicae, vol 49. Science Press, Beijing, pp 1–194

    Google Scholar 

  2. Jiang L, Li J, Tong R, He L, Zhang L, Li Z, Huang X (2019) Relationship between flower color and important cellular environment elemental factors in yellow Camellia. Guihaia 39(12):1605–1612. https://doi.org/10.11931/guihaia.gxzw201809019

    Article  Google Scholar 

  3. Li X, Wang J, Sun Z, Wang J, Yin H, Fan Z, Li J (2019) Flavonoid components in flowers from three species of section Chrysantha Chang in Camellia. Guihaia 39(7):917–924. https://doi.org/10.11931/guihaia.gxzw201809009

    Article  Google Scholar 

  4. Mouradov A, Spangenberg G (2014) Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci 5:620. https://doi.org/10.3389/fpls.2014.00620

    Article  PubMed  PubMed Central  Google Scholar 

  5. Passat DN (2012) Interactions of black and green tea water extracts with antibiotics activity in local urinary isolated Escherichia coli. J Al-Nahrain Univ 15(3):134–142. https://doi.org/10.22401/JNUS.15.3.19

    Article  Google Scholar 

  6. Tanikawa N, Kashiwabara T, Hokura A, Abe T, Shibata M, Nakayama M (2008) A peculiar yellow flower coloration of Camellia using aluminum-flavonoid interaction. J Jpn Soc Hortic Sci 77(4):402–407. https://doi.org/10.2503/jjshs1.77.402

    Article  CAS  Google Scholar 

  7. Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Biol 49(1):311–343. https://doi.org/10.1146/annurev.arplant.49.1.311

    Article  CAS  Google Scholar 

  8. Hou J, Tong L, Cui G, Xu Z, Li Y (2011) Research advances of plant flavonoid 3′-hydroxylase (F3′H) gene. Plant Physiol J 47:641–647

    CAS  Google Scholar 

  9. Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26(11):1951–1959. https://doi.org/10.1007/s00299-007-0401-0

    Article  CAS  PubMed  Google Scholar 

  10. Nakatsuka T, Sasaki N, Nishihara M (2014) Transcriptional regulators of flavonoid biosynthesis and their application to flower color modification in Japanese gentians. Plant Biotechnol 31:389–399. https://doi.org/10.5511/plantbiotechnology.14.0731a

    Article  CAS  Google Scholar 

  11. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780. https://doi.org/10.1146/annurev.arplant.57.032905.105248

    Article  CAS  PubMed  Google Scholar 

  12. Jia Z (2017) Studies on roles of flavonoid quercetin and transcription factor ATMYB44 in induction and regulation of defense responses in Arabidopsis thaliana. Nanjing Agricultural University, Nanjing. https://doi.org/10.7666/d.Y1986714

    Book  Google Scholar 

  13. Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19(4):441–451. https://doi.org/10.1046/j.1365-313X.1999.00539.x

    Article  CAS  PubMed  Google Scholar 

  14. Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381(8):749–753. https://doi.org/10.1515/BC.2000.095

    Article  CAS  PubMed  Google Scholar 

  15. Sirim D, Wagner F, Lisitsa A, Pleiss J (2009) The cytochrome P450 engineering database: integration of biochemical properties. BMC Biochem. https://doi.org/10.1186/1471-2091-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010) Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153(2):806–820. https://doi.org/10.1104/pp.109.152801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li L, Cheng H, Chen X, Cheng S (2015) Molecular cloning, characterization and expression of flavonoid 3′hydroxylase-like protein gene from Ginkgo biloba. Acta Hortic Sin 42:643–654

    CAS  Google Scholar 

  18. Zhou TS, Zhou R, Yu YB, Xiao Y, Li DH, Xiao B, Yu O, Yang YJ (2016) Cloning and characterization of a flavonoid 3′-hydroxylase gene from tea plant (Camellia sinensis). Int J Mol Sci 17(2):261. https://doi.org/10.3390/ijms17020261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang M, Wen Z, Chi Y, Peng Z, Chen Q (2017) Molecular cloning and expression analysis of flavonoids 3′-hydroxylase (CaF3′H) in Canarium album. Mol Plant Breed 15(3):839–847

    Google Scholar 

  20. Lukačin R, Urbanke C, Gröning I, Matern U (2000) The monomeric polypeptide comprises the functional flavanone 3β-hydroxylase from Petunia hybrida. FEBS Lett 467(2–3):353–358. https://doi.org/10.1016/s0014-5793(00)01116-9

    Article  PubMed  Google Scholar 

  21. Masukawa T, Cheon K-S, Mizuta D, Kadowaki M, Nakatsuka A, Kobayashi N (2019) Development of mutant RsF3′H allele-based marker for selection of purple and red root in radish (Raphanus sativus L. var. longipinnatus LH Bailey). Euphytica 215(7):119. https://doi.org/10.1007/s10681-019-2442-1

    Article  CAS  Google Scholar 

  22. Masukawa T, Cheon K-S, Mizuta D, Nakatsuka A, Kobayashi N (2018) Insertion of a retrotransposon into a flavonoid 3′-hydroxylase homolog confers the red root character in the radish (Raphanus sativus L. var. longipinnatus LH Bailey). Hortic J 87(1):89–96. https://doi.org/10.2503/hortj.OKD-075

    Article  CAS  Google Scholar 

  23. Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2006) Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. Mol Breed 17(2):91–99. https://doi.org/10.1007/s11032-005-2520-z

    Article  CAS  Google Scholar 

  24. Tanaka M, Sakai T, Takahata Y (2019) Allele dosage-dependent selection of recessive F3′H allele homozygote altered anthocyanin composition in sweetpotato. Mol Breed 39(11):1–12. https://doi.org/10.1007/s11032-019-1062-8

    Article  CAS  Google Scholar 

  25. Zhou X (2012) Clonging and function reasearch of pigment genes from Camallia nitidissma. Chinese Academy of Forestry Sciences, Beijing. https://doi.org/10.7666/d.D603419

    Book  Google Scholar 

  26. Olsen KM, Hehn A, Jugdé H, Slimestad R, Larbat R, Bourgaud F, Lillo C (2010) Identification and characterisation of CYP75A31, a new flavonoid 3′5′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol 10(1):21. https://doi.org/10.1186/1471-2229-10-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh435

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Binz P-A, Ou K, Sanchez J-C, Bairoch A, Williams KL (1999) High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 289(3):645–657. https://doi.org/10.1006/jmbi.1999.2794

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Jiang L, Fan Z, Tong R, Zhou X, Li J, Yin H (2020) Functional diversification of the dihydroflavonol 4-reductase from Camellia nitidissima Chi. in the control of polyphenol biosynthesis. Genes 11(11):1341. https://doi.org/10.3390/genes11111341

    Article  CAS  PubMed Central  Google Scholar 

  32. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37. https://doi.org/10.1128/MMBR.67.1.16-37.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma L, Lukasik E, Gawehns F, Takken FL (2012) The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods Mol Biol 835:61–74. https://doi.org/10.1007/978-1-61779-501-5_4

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46(5):812–816. https://doi.org/10.1093/pcp/pci083

    Article  CAS  PubMed  Google Scholar 

  35. He L, Zhao S, Hu Z (2008) Gene and function research progress of plant cytochrome P450s. Pharm Biotechnol 15(2):142. https://doi.org/10.3724/SP.J.1005.2008.01026

    Article  CAS  Google Scholar 

  36. Seitz C, Ameres S, Forkmann G (2007) Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase. FEBS Lett 581(18):3429–3434. https://doi.org/10.1016/j.febslet.2007.06.045

    Article  CAS  PubMed  Google Scholar 

  37. Murakami K, Mihara K, Omura T (1994) The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem 116(1):164–175. https://doi.org/10.1016/0165-022X(94)90059-0

    Article  CAS  PubMed  Google Scholar 

  38. Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T (1993) Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem 114(5):652–657. https://doi.org/10.1007/s00601-013-0691-4

    Article  CAS  PubMed  Google Scholar 

  39. He F, Chen WK, Yu KJ, Ji XN, Duan CQ, Reeves MJ, Wang J (2015) Molecular and biochemical characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry 117:363–372. https://doi.org/10.1016/j.phytochem.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Wang W, Zhang P, Pan Q, Zhan J, Huang W (2010) Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries. Plant Sci 179(1–2):103–113. https://doi.org/10.1016/j.plantsci.2010.04.002

    Article  CAS  Google Scholar 

  41. Li H, Liu J, Jin W, Liang Z (2019) Cloning, subcellular localization and spatio-temporal expression analysis of a flavonoid 3-O-glucosyltransferase gene (SmUF3GT) in Salvia miltiorrhiza. China J Chin Mater Med 44(10):2038–2045. https://doi.org/10.19540/j.cnki.cjcmm.20190301.009

    Article  Google Scholar 

  42. Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol 50(2):187–196. https://doi.org/10.1023/A:1016087221334

    Article  CAS  PubMed  Google Scholar 

  43. Stafford H (1974) Possible multienzyme complexes regulating the formation of C6–C3 phenolic compounds and lignins in higher plants. Recent Adv Phytochem 8:53–79. https://doi.org/10.1016/B978-0-12-612408-8.50009-3

    Article  CAS  Google Scholar 

  44. Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS ONE. https://doi.org/10.1371/journal.pone.0062315

    Article  PubMed  PubMed Central  Google Scholar 

  45. He H, Pan H, Zhang N, He L (2015) Chromolaena odorata Flavonoid 3′-hydroxylase gene cloning and its expression in tobacco. Acta Agron Sin 41(3):479–486. https://doi.org/10.3724/SP.J.1006.2015.00479

    Article  CAS  Google Scholar 

  46. Zhang S, Guo H, Pei X, Li C, Cheng H (2009) Expression of flavonoid 3′-hydrolyase from Eupatorium adenophorum in tobacco. Sci Agric Sin 42(12):4182–4186. https://doi.org/10.3864/j.issn.0578-1752.2009.12.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the National Forestry and Grassland Administration Economic Forest Product Quality Supervision, Inspection and Testing Center (Hangzhou) for their assistance in condition establishment and detection of high-performance liquid phase.

Funding

This work was supported by the National Key R&D Program of China (2019YFD1001005), the special funds for basic scientific research expenses of public welfare research institutes of the Chinese academy of forestry (CAFYBB2017ZF001), The National key projects for international scientific and technological innovation cooperation among governments (2016YFE0126100), The National Natural Science Foundation of China (No. 31860228), the Key projects of Natural Science Foundation of the Guangxi Zhuang Autonomous Region (2018GXNSFDA281007), and Scientific Research Foundation of Yulin Normal University for high-level talents (G2018025).

Author information

Authors and Affiliations

Authors

Contributions

JL finished the main experimental contentc, wrote and modified the paper. FZ and TR participated in the experiment and data collection together. ZX provided the foundation and thought for the preliminary study. LJ was the architect and director of the project. YH was responsible for the experimental design, and guided the writing and modification of the paper. All authors read and agree to the final manuscript.

Corresponding authors

Correspondence to Jiyuan Li or Xingwen Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Fan, Z., Tong, R. et al. Flavonoid 3′-hydroxylase of Camellia nitidissima Chi. promotes the synthesis of polyphenols better than flavonoids. Mol Biol Rep 48, 3903–3912 (2021). https://doi.org/10.1007/s11033-021-06345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06345-6

Keywords

Navigation