Skip to main content
Log in

Overexpression of a Freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia (Petunia hybrida)

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

UDP glucose flavonoid 3-O-glycosyltransferase(3GT) is a key enzyme in biosynthesis of stable anthocyanins, which are generally required for flower coloration. Fh3GT1, a cDNA encoding the 3GT from Freesia hybrida, was overexpressed in Petunia hybrida to investigate the influence on flavonoid accumulation. Flowers of transgenic petunia showed color alteration from white to pink and were subjected to further analysis by HPLC-ESI-MS. The results indicated that overexpression of Fh3GT1 resulted in evident increase of cyanidin, peonidin, and kaempferol content in transgenic flowers, whereas the content of quercetin increased slightly. Expressions of endogenous flavonoid biosynthetic pathway genes in transgenic flowers were analyzed by real-time qPCR. The results showed that transcript levels of PhCHS, PhCHI, PhF3H, and Ph3GT were significantly upregulated. Meanwhile, overexpression of Fh3GT1 also led to enhanced expression of AN1 (bHLH) and MYBx (R3MYB) genes, as the mRNA levels of other transcription factors remained constant in control and overexpression lines. Thus, Fh3GT1 overexpression increased the accumulation of anthocyanins and flavonols by modulating the expressions of various flavonoid biosynthesis genes in flowers of transgenic petunia. These results also suggest that Fh3GT1 is a key gene involved in anthocyanin and flavonol biosynthesis and should serve as a useful candidate to modify the components of flavonoid in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Aharoni A, De Vos C, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O'Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

    Article  CAS  PubMed  Google Scholar 

  • Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771–784

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Tatsuzawa F, Saito N, Takahashi M, Tsunashima Y, Watanabe H, Kokubun H, Hara R, Seki H, Hashimoto G (2000) Differences in the floral anthocyanin content of red petunias and Petunia exserta. Phytochemistry 54:495–501

    Article  CAS  PubMed  Google Scholar 

  • Bueno JM, Sáez-Plaza P, Ramos-Escudero F, Jiménez AM, Fett R, Asuero AG (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem 42:126–151

    Article  CAS  Google Scholar 

  • Castaneda-Ovando A, Pacheco-Hernández MDL, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  • Chandler SF, Brugliera F (2011) Genetic modification in floriculture. Biotechnol Lett 33:207–214

    Article  CAS  PubMed  Google Scholar 

  • Cultrone A, Cotroneo PS, Recupero GR (2010) Cloning and molecular characterization of R2R3-MYB and bHLH-MYC transcription factors from Citrus sinensis. Tree Genet Genomes 6:101–112

    Article  Google Scholar 

  • Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268

    Article  CAS  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine 9:15–27

    Article  CAS  Google Scholar 

  • Ferreyra MLF, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Ford CM, Boss PK, Høj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    Article  CAS  PubMed  Google Scholar 

  • Forkmann G, Stotz G (1984) Selection and characterisation of flavanone 3-hydroxylase mutants of Dahlia, Streptocarpus, Verbena and Zinnia. Planta 161:261–265

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesbach RJ, Asen S (1990) Characterization of the flavonol glycosides in petunia. Plant Sci 70:49–56

    Article  CAS  Google Scholar 

  • Griesbach RJ, Asen S, Leonnarat BA (1991) Petunia hybrida anthocyanins acylated with caffeic acid. Phytochemistry 30:1729–1731

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

  • Hall D, Yuan XX, Murata J, Luca VD (2012) Molecular cloning and biochemical characterization of the UDP-glucose: flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca). Phytochemistry 74:90–99

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS (2012) Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. J Exp Bot 63:2437–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller W, Forkmann G (1988) Biosynthesis, Harbome edn. Chapman and Hall, London

    Google Scholar 

  • Hu C, Gong Y, Jin S, Zhu Q (2011) Molecular analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum). Mol Biol Rep 38:561–567

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 3(2):164–174

    Article  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kibet NK (2013) Fruit skin color and the role of anthocyanin. Acta Physiol Plant 35:2879–2890

    Article  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  CAS  PubMed  Google Scholar 

  • Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida 'red Star' flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    Article  CAS  PubMed  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2010) Functional characterization of a UDP-glucose: flavonoid 3-O-glucosyltransferase from the seed coat of black soybean ( Glycine max(L.) Merr.) Phytochemistry 71:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Li F, Jin Z, Qu W, Zhao D, Ma F (2006) Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol Bioc 44:455–461

    Article  CAS  Google Scholar 

  • Liobikas J, Skemiene K, Trumbeckaite S, Borutaite V (2016) Anthocyanins in cardioprotection: a path through mitochondria. Pharmacol Res. doi:10.1016/j.phrs.2016.03.036

  • Maleka M, Albertyn J, Spies J (2013) The floriculture industry and flower pigmentation—a review. Philos Trans Genet 2:55–110

    Google Scholar 

  • Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso) flavonoids. J Mol Biol 392:1292–1302

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakatsuka T, Yamada E, Saito M, Fujita K, Nishihara M (2013) Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers. Plant Cell Rep 32:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara M, Nakatsuka T (2010) Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. Methods Mol Biol 589:325–347

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    Article  CAS  PubMed  Google Scholar 

  • Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143:247–253

    Article  PubMed  Google Scholar 

  • Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ (2008) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 147:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Teresa SD (2014) Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins. Arch Biochem Biophys 559:68–74

    Article  PubMed  Google Scholar 

  • Pelletier MK, Burbulis IE, Winkel-Shirley B (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 40:45–54

    Article  CAS  PubMed  Google Scholar 

  • Peter M, Iirs H, Gert F, Heinz S (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 677–678

  • Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Pourcel L, Irani NG, Koo AJ, Bohorquez-Restrepo A, Howe GA, Grotewold E (2013) A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 74:383–397

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Saleh NA, Poulton JE, Grisebach H (1976) UDP-glucose: cyanidin 3-O-glucosyltransferase from red cabbage seedlings. Phytochemistry 15:1865–1868

    Article  CAS  Google Scholar 

  • Schijlen EGWM, Vos CHRD, Tunen AJV, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648

    Article  CAS  PubMed  Google Scholar 

  • Schwinn KE, Davies KM, Deroles SC, Markham KR, Miller RM, Bradley JM, Manson DG, Given NK (1997) Expression of an Antirrhinum majus UDP-glucose: flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus ( Eustoma grandiflorum Grise.) Plant Sci 125:53–61

    Article  CAS  Google Scholar 

  • Stracke R, Vos RCHD, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229:427–445

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Gao X, Ao M, Wang Q, Yang D, Wang M, Fu Y, Wang L (2011) cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Freesia hybrida. Plant Cell Rep 30:1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T (1996) Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol 37:711–716

    Article  CAS  PubMed  Google Scholar 

  • Tatsuzawa F, Saito N, Yokoi M (1996) Anthocyanins in the flowers of Cymbidium. Lindleyana 11:214–219

    Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–388

    Article  CAS  PubMed  Google Scholar 

  • Wang CK, Chen PY, Wang HM, To KY (2006) Cosuppression of tobacco chalcone synthase using Petunia chalcone synthase construct results in white flowers. Bot Stud 47:71–82

    CAS  Google Scholar 

  • Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583:3303–3309

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Wang QY, Feng ZH, Wang B, Zhang YF, Yang Q (2011) Increased accumulation of anthocyanins in transgenic potato tubers by overexpressing the 3GT gene. Plant Biotechnol Rep 6:69–75

    Article  Google Scholar 

  • Wei S, Lingj L, Xiangyu M, Yueqing L, Fengzhan G, Xingxue L, Shucai W, Xiang G, Li W (2016) Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida. Front Plant Sci. doi:10.3389/fpls.2016.00410

  • Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48:401–411

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara N, Imayama T, Fukuchi-Mizutani M, Okuhara H, Tanaka Y, Ino I, Yabuya T (2005) cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Iris hollandica. Plant Sci 169:496–501

    Article  CAS  Google Scholar 

  • Zhang Z, Kou X, Fugal K, McLaughlin J (2004) Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J Agric Food Chem 52:688–691

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Tao J (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6:261

    PubMed  PubMed Central  Google Scholar 

  • Zhao ZC, Hu GB, Hu FC, Wang HC, Yang ZY, Lai B (2012) The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration. Mol Biol Rep 39:6409–6415

    Article  CAS  PubMed  Google Scholar 

  • Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170276, 31300271), Jilin Provincial Government of the People’s Republic of China (20130102061JC), the Fundamental Research Fund for the Central Universities (2412015ZH006), and the Initial Fund Key Laboratories of Guizhou Province (grant no. 2011-4005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Additional information

Editor: Ewen Mullins

Electronic supplementary material

Figure S1

(DOC 75 kb)

Table S1

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Meng, X., Liang, L. et al. Overexpression of a Freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia (Petunia hybrida). In Vitro Cell.Dev.Biol.-Plant 53, 478–488 (2017). https://doi.org/10.1007/s11627-017-9836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9836-3

Keywords

Navigation