Skip to main content

Advertisement

Log in

Anti-IL-23 exerted protective effects on cerebral ischemia–reperfusion injury through JAK2/STAT3 signaling pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ischemia–reperfusion frequently occurs in ischemic cerebral vascular disease, during which the inflammatory signaling plays essential roles. The aim of this study was to discover the efficacy of the antibody to a key immune cytokine IL-23 (anti-IL-23) for the therapy of cerebral ischemia–reperfusion injury. We established the cerebral ischemia–reperfusion injury model by middle cerebral artery occlusion (MCAO). Anti-IL-23 injection attenuated lesions indicated by histology study. RT-PCR and Western blot were employed to detect the mRNA and protein expression of JAK2 and STAT3 after anti-IL-23 treatment. ELISA was utilized to measure the levels of MDA (malondialdehyde) and superoxide dismutase (SOD). Moreover, curcumin and IL-6 were implicated in the endogenous intervention of IL-23 signaling in vivo. Our data demonstrated that the treatment of anti-IL-23 might transcriptionally activate the classic immune pathway in the brain. Anti-IL-23 augmented phosphorylation levels of both JAK2 and STAT3, suggesting the amplification signaling of JAK/STAT after exogenous IL-23 intervention. Anti-IL-23 reduced ROS molecules of STAT downstream in the serum and brain. It also alleviated the injury by bringing down levels of MDA and SOD in the serum. JAK2 inhibitor could abolish the effect of anti-IL-23 whereas JAK3 ameliorated the injury. The combination of anti-IL-23 and JAK3i could reduce infarct volume more effectively. In summary, this study indicated that anti-IL-23 had protective effects against cerebral ischemia–reperfusion injury by targeting the immune specific JAK2-STAT3 in JAK/STAT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its supporting information files.

References

  1. Yu L et al (2018) Sedentary behavior and the risk of cardiac-cerebral vascular diseases in Southern China. Medicine 97:e12838

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fang Z et al (2017) Association study of IGFBP1 and IGFBP3 polymorphisms with hypertension and cardio-cerebral vascular diseases in a Chinese Han population. Oncotarget 8:77836

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiao T, Palida K, Dan Y (2017) Luteolin protects brain injury and improves endogenous neural stem cells proliferation on cerebral ischemia-reperfusion injury in rat. Chin J Biochem Pharm 37:37–40

    Google Scholar 

  4. Hou Y et al (2018) Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 336:32–39

    Article  CAS  PubMed  Google Scholar 

  5. Chen C et al (2018) Platelet glycoprotein receptor Ib blockade ameliorates experimental cerebral ischemia–reperfusion injury by strengthening the blood–brain barrier function and anti-thrombo-inflammatory property. Brain Behav Immun 69:255–263

    Article  CAS  PubMed  Google Scholar 

  6. Janyou A et al (2017) Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  7. Zhang S et al (2018) Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model. J Vasc Surg 68:209S-221S. e202

    Article  PubMed  Google Scholar 

  8. Ge J et al (2017) Protective effects of LBP on cerebral ischemia reperfusion injury in mice and mechanism of inhibiting NF-κB, TNF-α, IL-6 and IL-1β. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chin Mater Med 42:326–331

    Google Scholar 

  9. Shanshan Y et al (2017) Phospholipase A2 of peroxiredoxin 6 plays a critical role in cerebral ischemia/reperfusion inflammatory injury. Front Cell Neurosci 11:99

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun W, Ding Z, Xu S, Su Z, Li H (2017) Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. Int J Mol Med 40:1750–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sardou HS, Jebali A, Iman M (2019) Dual function of interleukin-23 aptamer to suppress brain inflammation via attachment to macrophage stimulating 1 kinase and interleukin-23. Colloids Surf B Biointerfaces 185:110619

    Article  Google Scholar 

  12. Yang W et al (2019) Herbal compatibility of ginseng and rhubarb exerts synergistic neuroprotection in cerebral ischemia/reperfusion injury of rats. Front Physiol 10:1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lan B et al (2020) Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J Integr Med 18:344–350

    Article  PubMed  Google Scholar 

  14. Yang R, Hu K (2017) Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci Lett 651:207–215

    Article  CAS  PubMed  Google Scholar 

  15. Wan F, Niu X, Song Y-L, Si Y-C (2016) The role of Chinese herbs and acupuncture on the inflammation reaction after cerebral ischemia. Curr Pharm Des 22:709–719

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad N, Khan Z, Basit A, Zohrameena S (2017) Neuroprotective agents, natural plant herbs & drugs in ischemic stroke: a review. PharmaTutor 5:29–36

    CAS  Google Scholar 

  17. Zeng K-W (2014) Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine 21:298–306

    Article  CAS  PubMed  Google Scholar 

  18. Jin W-N (2018) Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J 32:2757–2767

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han M (2020) A pivotal role for AMPK and JAK2/STAT3/NF-κB signaling pathway modulation. Drug Des Dev Ther 14:2865–2876

    Article  CAS  Google Scholar 

  20. Gelderblom M et al (2018) IL-23 (interleukin-23)–producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 49:155–164

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhry SR et al (2017) Aneurysmal subarachnoid hemorrhage lead to systemic upregulation of IL-23/IL-17 inflammatory axis. Cytokine 97:96–103

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Zhong D, Chen H (2019) NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice. Life Sci 227:101–113

    Article  PubMed  Google Scholar 

  23. Nakao A, Toyokawa H (2006) Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses. Transplantation 81:220–230

    Article  PubMed  Google Scholar 

  24. Caliskan M, Mogulkoc R, Baltaci AK (2016) The Effect of 3’,4’-dihydroxyflavonol on lipid peroxidation in rats with cerebral ischemia reperfusion injury. Neurochem Res 41:1732–1740

    Article  CAS  PubMed  Google Scholar 

  25. Sun J, Zhao Y, Hu J (2013) Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS ONE 8:e67078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou L et al (2007) IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  CAS  PubMed  Google Scholar 

  27. Hara H et al (2017) Apomorphine prevents LPS-induced IL-23 p19 mRNA expression via inhibition of JNK and ATF4 in HAPI cells. Eur J Pharm 795:108–114

    Article  CAS  Google Scholar 

  28. Ma X, Aoki T, Narumiya S (2016) Prostaglandin E 2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways. Cell Mol Immunol 13:240–250

    Article  CAS  PubMed  Google Scholar 

  29. Bloch Y et al (2018) Structural activation of pro-inflammatory human cytokine IL-23 by cognate IL-23 receptor enables recruitment of the shared receptor IL-12Rβ1. Immunity 48:45-58. e46

    Article  PubMed  Google Scholar 

  30. Schmitt H et al (2019) Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut 68:814–828

    Article  CAS  PubMed  Google Scholar 

  31. Eftychi C et al (2019) Temporally distinct functions of the cytokines IL-12 and IL-23 drive chronic colon inflammation in response to intestinal barrier impairment. Immunity 51:367-380. e364

    Article  CAS  PubMed  Google Scholar 

  32. Yan J, Smyth MJ, Teng MW (2018) Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol 10:a028530

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lubberts E (2015) The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 11:562

  34. Sakkas LI, Bogdanos DP (2017) Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev 16:10–15

    Article  CAS  PubMed  Google Scholar 

  35. Boutet M-A, Nerviani A, Gallo Afflitto G, Pitzalis C (2018) Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: the clinical importance of its divergence in skin and joints. Int J Mol Sci 19:530

    Article  PubMed Central  Google Scholar 

  36. Debnath M, Nagappa M, Murari G, Taly AB (2018) IL-23/IL-17 immune axis in Guillain Barre syndrome: exploring newer vistas for understanding pathobiology and therapeutic implications. Cytokine 103:77–82

    Article  CAS  PubMed  Google Scholar 

  37. Li T et al (2017) Involvement of IL-17 in secondary brain injury after a traumatic brain injury in rats. Neuromolecular Med 19:541–554

  38. Abdel-Moneim A, Bakery HH, Allam G (2018) The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 101:287–292

    Article  CAS  PubMed  Google Scholar 

  39. Liu X et al (2019) MiR-409-3p and MiR-1896 co-operatively participate in IL-17-induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling. Glia 67:101–112

  40. Schwartz DM, Bonelli M, Gadina M, O’shea JJ (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12:25

    Article  CAS  PubMed  Google Scholar 

  41. Stark GR, Cheon H, Wang Y (2018) Responses to cytokines and interferons that depend upon JAKs and STATs. Cold Spring Harb Perspect Biol 10:a028555

    Article  PubMed  PubMed Central  Google Scholar 

  42. Villarino AV, Kanno Y, O’Shea JJ (2017) Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat Immunol 18:374

    Article  CAS  PubMed  Google Scholar 

  43. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Venugopal S, Bar-Natan M, Mascarenhas JO (2019) JAKs to STATs: a tantalizing therapeutic target in acute myeloid leukemia. Blood Rev 40:100634

    Article  PubMed  Google Scholar 

  45. Morris R, Kershaw NJ, Babon JJ (2018) The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 27:1984–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsukamoto T et al (2019) Chimeric G-CSF receptor-mediated STAT3 activation contributes to efficient induction of cardiomyocytes from mouse induced pluripotent stem cells. Biotechnol J 15:1900052

    Article  Google Scholar 

  47. Neuper T et al (2017) NOD1 modulates IL-10 signalling in human dendritic cells. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  48. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan N, Yu G, Liu D, Wang X, Zhao L (2019) An emerging role of interleukin-23 in rheumatoid arthritis. Immunopharmacol Immunotoxicol 41:185–191

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Liu F, Zhang C (2018) Effect and mechanism of pulmonary infection on immune function and renin-angiotensin-aldosterone system in patients with severe acute pancreatitis. Int J Clin Exp Med 11:12189–12196

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Beijing Chaoyang Hospital, Capital Medical University for their technical assistance.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LF and LZ designed the study, performed the research, analysed data, and wrote the paper.

Corresponding author

Correspondence to Lichun Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by animal use committee of Beijing Chaoyang Hospital, Capital Medical University and conducted in strict accordance with the national institutes of health guidelines for the care and use of experimental animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhou, L. Anti-IL-23 exerted protective effects on cerebral ischemia–reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 48, 3475–3484 (2021). https://doi.org/10.1007/s11033-021-06339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06339-4

Keywords

Navigation