Skip to main content

Advertisement

Log in

Molecular characterization, gas chromatography mass spectrometry analysis, phytochemical screening and insecticidal activities of ethanol extract of Lentinus squarrosulus against Aedes aegypti (Linnaeus)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mosquito-transmitted diseases like zika, dengue, chikungunya, and yellow fever are known to affect human health worldwide. Numerous synthetic insecticides have been used as vector control for these diseases, but there is the challenge of environmental toxicity and vector resistance. This study investigated the medicinal and insecticidal potential of Lentinus squarrosulus against Aedes aegypti. The fruiting bodies were identified morphologically as well as using internal transcribed spacer (ITS) sequences for its molecular characterization. Genomic deoxyribonucleic acid (DNA) yield was confirmed with NanoDrop Spectrophotometer ND-1000 and amplified with ITSl and ITS4 primers. The amplicons were sequenced and the National Center for Biotechnology Information (NCBI) database identified the nucleotides. Its ethanol extract was subjected to phytochemical screening and gas chromatography mass spectrometry (GC-MS) analysis and tested against the pupa and fourth instar larva of Aedes aegypti with percentage mortality monitored. The Macrofungus was identified morphologically and confirmed with molecular characterization as Lentinus squarrosulus (LS). The gene sequence was deposited in GenBank (Accession number MK629662.1). GC-MS analysis showed that its ethanol extract has 25 bioactive compounds with 9,12-Octadecadienoic acid, ethyl ester having the highest percentage of 43.32% as well as methyl-2-oxo-1-pyrrolidine acetate and 17-octadecynoic acid having the lowest percentage (0.09%). The macrofungus contained varied concentrations of phytochemicals including phenols (159 mg/g GAE), tannins (1.6 mg/g TAE), and flavonoids (31.4 mg/g QE). The ethanol extract had significant potent effects on Aedes aegypti larva and pupa which could be due to the occurrence and abundance of 9,12-octadecadienoic acid in LS. The LC50 of the extract for larvicidal and pupicidal activities were 2.95 mg/mL and 3.55 mg/mL, respectively, while its LC90 were 6.31 mg/mL and 5.75 mg/mL respectively. Lentinus squarrosulus had insecticidal effects against the Aedes aegypti larva and pupa and possessed great potential as a source of alternative medicine and eco-friendly insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declare that all generated and analysed data are included in this article.

References

  1. Hennessey M, Fischer M, Staples JE (2016) Zika virus spreads to new areas – region of the Americas, May 2015 – January 2016. MMWR 66:55–58

    Google Scholar 

  2. Londono-Renteria B, Cardenas JC, Cardenas LD, Christofferson RC, Chisenhall DM et al (2013) Use of anti-Aedes aegypti salivary antibody concentration to correlate risk of vector exposure and Dengue transmission risk in Colombia. PLoS One 8:e81211. https://doi.org/10.1371/journal.pone.0081211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360(24):2536–2543. https://doi.org/10.1056/NEJMoa0805715

    Article  CAS  PubMed  Google Scholar 

  4. Kusumawathie RS (2005) Distribution and breeding sites of potential dengue vectors in Kandy and Nuwara Eliya districts of Sri Lanka. Ceylon J Med Sci 48:43–52. https://doi.org/10.4038/cjms.v48i2.121

    Article  Google Scholar 

  5. Gérardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY (2008) Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 5(3):e60. https://doi.org/10.1371/journal.pmed.0050060

    Article  PubMed  PubMed Central  Google Scholar 

  6. Enserink M (2006) Infectious diseases: massive outbreak draws fresh attention to little-known virus. Science 311(5764):1085. https://doi.org/10.1126/science.311.5764.1085a

    Article  CAS  PubMed  Google Scholar 

  7. Oehler E, Watrin L, Larre P, Lepark-Goffart I, Lastère S, Valour F et al (2014) Zika virus infection complicated by Guillain-Barré syndrome- case report, French Polynesia, December 2013. Euro Surveill 19(9):20720. https://doi.org/10.2807/1560-7917.es2014.19.9.20720

    Article  PubMed  Google Scholar 

  8. Musso D (2015) Zika virus transmission in French Polynesia to Brazil. Emerg Infect Dis 21(10):1887. https://doi.org/10.3201/eid2110.151125

    Article  PubMed  PubMed Central  Google Scholar 

  9. Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D (2014) Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 19(13):20751

    Article  Google Scholar 

  10. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

    Article  CAS  PubMed  Google Scholar 

  11. Hikal WM, Baeshen RS, Said-Al Ahl HAH (2017) Botanical insecticide as simple extractives for pest control. Cogent Biol 3:1404274. https://doi.org/10.1080/23312025.2017.1404274

    Article  CAS  Google Scholar 

  12. Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2(3):285–299. https://doi.org/10.1093/ecam/neh107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang S-T, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  14. Jonathan SG, Fasidi IO, Ajayi EJ (2004) Physico-chemical studies on Volvariella esculenta (Mass) Singer, a Nigerian edible fungus. Food Chem 85(3):339–342. https://doi.org/10.1016/j.foodchem.2003.06.014

    Article  CAS  Google Scholar 

  15. Jonathan G, Ajayi A, Oku I, Wankasi D (2006) Nutritive value of common wild edible mushrooms from Southern Nigeria. Global J Biotechnol Biochem 1(1):16–21

    Google Scholar 

  16. Jonathan SG, Olawuyi OJ, Popoola OO, Aina DA (2010) Antibacterial activities of extracts of Daldinia concentrica. Afr J Biomed Res 14(1):57–61

    Google Scholar 

  17. Jonathan SG, Olawuyi OJ, Oluranti OO (2012) Studies on immunomodulatoty and prophylactic properties of some wild Nigerian mushrooms. Acad Arena 4(9):49–56

    Google Scholar 

  18. Chaiphongpachara T, Sumchung K, Chansukh KK (2018) Larvicidal and adult mosquito attractant activity of Auricularia auricular-judae mushroom extract on Aedes aegypti (L.) and Culex sitiens Wiedemann. J Appl Pharm Sci 8(8):021–025. https://doi.org/10.7324/japs.2018.8803

    Article  CAS  Google Scholar 

  19. Thongwat D, Pimolsri U, Somboon P (2015) Screening for mosquito larvicidal activity of Thai mushroom extracts with special reference to Steccherinum sp against Aedes aegypti (L.) (Diptera: culicidae). Southeast Asian J Trop Med Public Health 46(4):586–595

    PubMed  Google Scholar 

  20. Carpenter SJ, LaCasse WJ (1955) Mosquitoes of North America (North of Mexico). University of California Press, Berkeley, p 360

    Google Scholar 

  21. Cutwa-Francis MM, O’Meara GF (2007) An identification guide to the common mosquitoes of Florida. Florida Medical Entomology Laboratory. (27 February 2017)

  22. Maricopa County Environmental Services (2006) Lifecycle and information on Aedes aegypti mosquitoes. Maricopa County, AZ. (27 February 2017)

  23. Foster WA, Walker ED (2002) Mosquitoes (Culicidae). In: Mullen G, Durden L (eds) Medical and veterinary entomology. Academic Press, San Diego, p 597

    Google Scholar 

  24. Largent DL, Stuntz DE (1986) How to identify mushrooms to genus I: macroscopic features. Mad River Press, Eureka

    Google Scholar 

  25. Joshua VI, Falemara BC, Aina OO, Courson TR (2018) Morphological characterization and proximate analysis of three edible mushrooms in Plateau and Kogi States, Nigeria. World J Microbiol 4(2):139–145

    Google Scholar 

  26. Brennan RG, Rabb S, Holden MJ, Winchester MR, Turk GC (2009) Potential primary measurement tool for the quantification of DNA. Anal Chem 81:3414–3420. https://doi.org/10.1021/ac802688x

    Article  CAS  PubMed  Google Scholar 

  27. Rothrock MJ Jr (2011) Comparison of microvolume DNA quantification methods for use with volume-sensitive environmental DNA extracts. J Nat Environ Sci 2:34–38

    Google Scholar 

  28. White TJ, Bruns T, Lee SH, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR protocols: A guide to methods and amplifications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  29. Cho EJ, Yokozawa T, Rhyu DY et al (2003) Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1, 1-diphenyl-2-picrylhydrazyl radical. Phytomed 10(6-7):544–551

    Article  CAS  Google Scholar 

  30. Clarke EGC (1975) Isolation and identification of drugs, vol 2. Pharmaceutical Press, London, p 905

    Google Scholar 

  31. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  32. Ordonez AAL, Gomez JG, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swart extracts. Food Chem 97(3):452–458. https://doi.org/10.1016/j.foodchem.2005.05.024

    Article  CAS  Google Scholar 

  33. Noha A, Mohammed IA, Mohammed A, Elfadil EB (2011) Nutritional evaluation of Sorghum Flour (Sorghum bicolor L Moench) during processing of Injera. World Acad Sci Eng Technol 75:86–112

    Google Scholar 

  34. Okwu DE, Emenike IN (2006) Evaluation of the phytonutrients and vitamins content of ctirus fruits. Int J Mol Med Adv Sci 2(1):1–6

    CAS  Google Scholar 

  35. Onyilagba JC, Islam S (2011) Flavonoids and other polyphenols of the cultivated species of the genus phaseolus. Int J Agric Biol 11(3):1560–8530

    Google Scholar 

  36. Bagavan A, Rahuman AA (2011) Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac J Trop Med 4(1):29–34. https://doi.org/10.1016/S1995-7645(11)60027-8

    Article  CAS  PubMed  Google Scholar 

  37. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

  38. Koimbu G, Czeher C, Katusele M, Sakur M, Kilepak L, Tandrapah A et al (2017) Status of insecticide resistance in Papua New Guinea: an update from nation-wide monitoring of Anopheles mosquitoes. Am J Trop Med Hyg 98:162–165

    Article  Google Scholar 

  39. Kutznetsov VV (2018) Conformational analysis of fluoroethane in nanotubes. Russ J Org Chem 54(4):644–651

    Article  Google Scholar 

  40. Gondela E, Walczak KZ (2010) Synthesis and preliminary bioactivity assays of 3, 4-dichloro-5-(w-hydroxyalkylamino)-2 (5H)-furanones. Eur J Med Chem 45(9):3993–3997

    Article  CAS  Google Scholar 

  41. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59:783–836

    Article  CAS  Google Scholar 

  42. Plata-Salamán CR, Oomura Y, Shimizu N (1986) Endogenous sugar acid derivative acting as a feeding suppressant. Physiol Behav 38(3):359–373. https://doi.org/10.1016/0031-9384(86)90107-1

    Article  PubMed  Google Scholar 

  43. Naiki M, Takeoka Y, Yago H, Kuromoto Y, Gershwin ME, Suehiro S (1995) 2-buten-4-olide (2-B4O) inhibits experimental allergic encephalomyelitis (EAE) in Lewis rats. J Autoimmun 8(5):729–739. https://doi.org/10.1006/jaut.1995.0054

    Article  Google Scholar 

  44. Liu Y, Ebalunode JO, Briggs JM (2019) Insight into the substrate binding specificity of quorum-quenching acylase PvdQ. J Mol Graph Model 88:104–120. https://doi.org/10.1016/j.jmgm.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  45. Priya S, Nigam A, Bajpal P, Kumar S (2014) Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interat 219:34–37. https://doi.org/10.1016/j.cbi.2014.04.018

    Article  CAS  Google Scholar 

  46. Furber M, Alcaraz L, Bent JE, Beyerbach A, Bowers K, Braddock M, Caffrey MV, Cladingboel D, Collington J, Donald DK, Fagura M, Ince F, Kinchin EC, Laurent C, Lawson M, Luker TJ, Mortimore MMP, Pimm AD, Riley RJ, Roberts N, Robertson M, Theaker J, Thorne PV, Weaver R, Webborn P, Willis P (2007) Discovery of potent and selective adamantane-based small-molecule P2X7 receptor antagonists/interleukin-1β inhibitors. J Med Chem 50(24):5882–5885. https://doi.org/10.1021/jm700949w

    Article  CAS  PubMed  Google Scholar 

  47. Keystone EC, Wang MM, Layton M, Hollis S, IB MI, D1520C00001 Study Team (2012) Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis 71(10):1630–1635. https://doi.org/10.1136/annrheumdis-2011-143578

    Article  CAS  PubMed  Google Scholar 

  48. Gnanasunderam C, Young H, Butcher CF, Hutchins RFN (1981) Ethyl decanoate as a major component in the defensive secretion of two New Zealand Aleocharine (Staphylinidae) Beetles – Tramiathaea conigera (Broun) and Thamiaraea fuscicornis (Broun). J Chem Ecol 7:197–202. https://doi.org/10.1007/BF00988647

    Article  CAS  PubMed  Google Scholar 

  49. Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky Mountain Douglas-fir: Influence of water and nutrient availability. Ecol Monogr 62(1):43–65. https://doi.org/10.2307/2937170

    Article  Google Scholar 

  50. Vinholes J, Gonçalves P, Martel F, Coimbra MA, Rocha SM (2014a) Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in-vitro Caco-2 cell models. Food Chem 156:204–211. https://doi.org/10.1016/j.foodchem.2014.01.106

    Article  CAS  PubMed  Google Scholar 

  51. Vinholes J, Rudnitskaya A, Gonçalves P, Martel F, Coimbra MA, Rocha SM (2014b) Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach. Food Chem 146:78–84. https://doi.org/10.1016/j.foodchem.2013.09.039

    Article  CAS  PubMed  Google Scholar 

  52. Vadivel V, Abirami K, Ravichandran N, Brindha P (2016) Antioxidant, anti-cancer and phytochemical constituents of hexane extract fractions of an Indian Medicinal Plant Embelia ribes burm. Int J Pharmacog Phytochem Res 8(2):228–234

    Google Scholar 

  53. Mora C, Dousset B, Caldwell I, Powell F, Geronimo R, Bielecki C, Counsell C, Dietrich B, Johnston E, Louis L, Lucas M, McKenzie M, Shea A, Tseng H, Giambelluca T, Leon L, Hawkins E, Trauernicht C (2017) Global risk of deadly heat. Nat Clim Chang 7:501–506

    Article  Google Scholar 

  54. Mohammed GJ, Kadhim MJ, Hussein HM (2016) Characterization of bioactive chemical compounds from Aspergillus terreus and evaluation of antibacterial and antifungal activity. Int J Pharmacog Phytochem Res 8(6):889–905

    Google Scholar 

  55. Zou AP, Ma YH, Sui ZH, Ortiz de Montellano PR, Clark JE, Masters BS, Roman RJ (1994) Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid omega-hydroxylase, on renal function in rats. J Pharmacol Exp Ther 268(1):474–481

    CAS  PubMed  Google Scholar 

  56. Upgade A, Anusha B (2013) Characterization and medicinal importance of phytoconstiuents of Carica papaya from down south Indian region using gas chromatography and mass spectroscopy. Asian J Pharm Clin Res 6(4):101–106

    CAS  Google Scholar 

  57. Ahrens RC, Smith GD (1984) Albuterol: an adrenergic agent for use in the treatment of asthma pharmacology, pharmacokinetics and clinical use. Pharmacother 4(3):105–121

    Article  CAS  Google Scholar 

  58. Lakshmi CNDM, Prabhakara JPR, Saritha K, Raju BDP, Sushma NJ (2018) Phytoconstituents profile of Clitoria ternatea by GC-MS and its age-related anticholinergic activity against aluminium and restraint stress. Int Res J Pharm 9(2):38–44. https://doi.org/10.7897/2230-8407.09224

    Article  CAS  Google Scholar 

  59. Tyagi T, Agarwal M (2017) Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extracts of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharmacog Phytochem 6(1):195–206

    CAS  Google Scholar 

  60. Wei CC, Yen PL, Chang ST, Cheng PL, Lo YC, Liao VHC (2016) Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. PLoS One 11(6):e0157195. https://doi.org/10.1371/journal.pone.0157195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duke J (1996) The phytochemical and ethnobotanical databases. Compiled by Jim Duke and maintained by the Agricultural Research Service, USDA

  62. Baranitharan M, Sawicka B, Gokulakrishnan J (2019) Phytochemical profiling and larval control of Erythrina variegate methanol fraction against malarial and filarial vector. Adv Prev Med 2019:2641959. https://doi.org/10.1155/2019/2641959

    Article  PubMed  PubMed Central  Google Scholar 

  63. Okonkwo CO, Ohaeri OC (2018) Insecticidal efficacy and chemical composition of hexane oil extracts from the leaves of Euphorbia milii and Cassia occidentalis. Int J Biochem Res Rev 23(3):1–11. https://doi.org/10.9734/IJBCRR/2018/43173

    Article  Google Scholar 

  64. Chen F, Dai W (2015) Bicoloratum Dai and Li, a new synonym of the leafhopper genus Scaphoideus Uhler (Hemiptera, Cicadellidae, Deltocephalinae), with description of two new species. Zootaxa 3985(2):275–283. https://doi.org/10.11646/zootaxa.3985.2.6

    Article  PubMed  Google Scholar 

  65. Dinesh KG, Karthik M, Rajakumar R (2018) GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (Mart) Solms. and their pharmacological activities. Pharm Innov J 7(8):459–462

    Google Scholar 

  66. Haubrich BA (2018) Microbial sterolomics as a chemical biology tool. Molecules 23(11):2768. https://doi.org/10.3390/molecules23112768

    Article  CAS  PubMed Central  Google Scholar 

  67. Muruke MHS, Kivaisi AK, Mangingo FSS, Danell E (2002) Identification of mushroom mycelia using DNA techniques. Tanzanian J Sci 28:115–128. https://doi.org/10.4314/tjs.v28i1.18323

    Article  Google Scholar 

  68. Avin FA, Bhassu S, Shin TV, Sabaratnam V (2012) Molecular classification and phylogentic relationships of selected edible Basidiomycetes species. Mol Biol Rep 39(7):7355–7364. https://doi.org/10.1007/s11033-012-1567-2

    Article  CAS  PubMed  Google Scholar 

  69. Amer OE, Mahmoud MA, El-Samawaty AMA, Sayed SRM (2011) Non liquid nitrogen-based-method for isolation of DNA from filamentous fungi. Afr J Biotechnol 10(65):14337–14341. https://doi.org/10.5897/AJB11.1401

    Article  CAS  Google Scholar 

  70. Avin FA, Bhassu S, Sabaratnam V (2013) A simple and low-cost technique of DNA extraction from edible mushrooms examined by molecular phylogenetics. Res Crops 14(3):897–901

    Google Scholar 

  71. Olayemi IK (2013) Evaluation of larvicidal efficacy of extract of the fungus Ganoderma lucidum, for the control of the filarial vector mosquito, Culex pipiens (Diptera: Culicidae). Am J Drug Discov Dev 3(3):130–139. https://doi.org/10.3923/ajdd.2013.130.139

    Article  Google Scholar 

  72. Jawale CS (2014) Larvicidal activity of some saponin containing plants against the Dengue vector, Aedes aegypti. Trends Biotechnol Res 3(1):1–11

    Google Scholar 

  73. Danga SP, Nukenine E, Younoussa L, Esimone CO (2014) Phytochemicals and larvicidal activity of Plectranthus glandulosus (Lamiaceae) leaf extracts against Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus. Int J Pure Appl Zool 2(2):160–170

    Google Scholar 

  74. Akpuaka A, Ekwenchi MM, Dashsak DA, Dildar (2013) Biological activities of characterized isolates of n-hexane extract Azadirachta indica A. juss (Neem) leaves. N Y Sci J 6(6):119–124

    Google Scholar 

  75. Gnanavel V, Saral AM (2013) GC-MS analysis of petroleum ether and ethanol leaf extracts from Abrus precatorius Linn. Int J Pharm Bio Sci 4(3):37–44

    CAS  Google Scholar 

  76. Oliveira MSC, de Morais SM, Magalhães DV et al (2011) Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop 117(3):165–170

    Article  CAS  Google Scholar 

  77. Olajuyigbe AA, Olajuyigbe OO, Coopoosamy RM (2020) Interaction of Ziziphus mucronata subsp. mucronata methanol extract and first-line antibiotics is synergistic in vitro through production of reactive oxygen species. J Trop Med 2020:4087394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MOAI, SGJ and OOO sourced for macrofungus and performed the experiment. MOAI, SGJ, RMC and OOO wrote the manuscript and participated in the data discussion, data analyses, and drafting of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Olufunmiso Olusola Olajuyigbe.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Informed consent

All authors gave their consent for the publishing of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeoye-Isijola, M.O., Jonathan, S.G., Coopoosamy, R.M. et al. Molecular characterization, gas chromatography mass spectrometry analysis, phytochemical screening and insecticidal activities of ethanol extract of Lentinus squarrosulus against Aedes aegypti (Linnaeus). Mol Biol Rep 48, 41–55 (2021). https://doi.org/10.1007/s11033-020-06119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06119-6

Keywords

Navigation