Skip to main content
Log in

Distinct roles for Notch1 and Notch3 in human adipose-derived stem/stromal cell adipogenesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The role of the Notch signaling pathway in adipogenesis has long been controversial as the action of individual Notch receptors appears to vary with experimental conditions. In this study, we offer some explanation for the observed contradictions by comparing the role of both Notch1 and Notch3 in regulating the expression of key adipogenic regulator, PPARγ, in human adipose-derived stem/stromal cells (hADSCs) during in vitro adipogenesis. Utilizing qRT-PCR, western blot, and immunofluorescence staining, we demonstrated that Notch3 was expressed prior to the formation of lipid vesicles, while Notch1 only appeared after vesicle formation. In addition, following the induction of adipogenesis, the levels of Notch1 intracellular domain in the nucleus were significantly reduced, while the siRNA-mediated loss of Notch1 reduced transcript but not protein levels of PPARγ. The knockdown of Notch3 led to increased expression of PPARγ during early adipogenesis that was not paralleled by a decreased expression of Hes1 and Hey1, but was accompanied by a marked decrease in the protein level of β-catenin, the key functional component of the canonical Wnt/β-catenin signaling pathway. This study deepens the understanding of the Notch pathway by clarifying the distinct roles of Notch1 and Notch3 during adipogenesis. We showed that Notch3 is involved in early adipogenic differentiation, while Notch1 functions later in the process. In addition, we begin to uncover the interaction between the Notch and Wnt signaling pathways that may offer novel therapeutic targets aimed at obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghaben AL, Scherer PE (2019) Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 20(4):242–258. https://doi.org/10.1038/s41580-018-0093-z

    Article  CAS  PubMed  Google Scholar 

  2. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.108765

    Article  PubMed  Google Scholar 

  3. Radtke C, Schmitz B, Spies M, Kocsis JD, Vogt PM (2009) Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci 27(8):817–823. https://doi.org/10.1016/j.ijdevneu.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  4. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140. https://doi.org/10.1016/j.bbrc.2006.01.072

    Article  CAS  PubMed  Google Scholar 

  5. Traktuev DO, Parfenova EV, Tkachuk VA, March KL (2006) Adipose stromal cells-plastic type of cells with high therapeutic potential. Tsitologiia 48(2):83–94

    CAS  PubMed  Google Scholar 

  6. Giuli MV, Giuliani E, Screpanti I, Bellavia D, Checquolo S (2019) Notch signaling activation as a hallmark for triple-negative breast cancer subtype. J Oncol. https://doi.org/10.1155/2019/8707053

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hossain F, Sorrentino C, Ucar DA, Peng Y, Matossian M, Wyczechowska D et al (2018) Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways. Front Oncol 8(DEC):575. https://doi.org/10.3389/fonc.2018.00575

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meurette O, Mehlen P (2018) Notch signaling in the tumor microenvironment. Cancer Cell. https://doi.org/10.1016/j.ccell.2018.07.009

    Article  PubMed  Google Scholar 

  9. Osathanon T, Subbalekha K, Sastravaha P, Pavasant P (2012) Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 36(12):1161–1170. https://doi.org/10.1042/CBI20120288

    Article  CAS  PubMed  Google Scholar 

  10. Aster JC, Robertson ES, Hasserjian RP, Turner JR, Kieff E, Sklar J (1997) Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with RBP-Jkappa and activate transcription. J Biol Chem 272(17):11336–11343. https://doi.org/10.1074/jbc.272.17.11336

    Article  CAS  PubMed  Google Scholar 

  11. Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216. https://doi.org/10.1016/J.CELL.2009.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang W et al (2010) gamma-secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-gamma. Cell Prolif 43(2):147–156. https://doi.org/10.1111/j.1365-2184.2009.00661.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song BQ, Chi Y, Li X, Du WJ, Han ZB, Tian JJ et al (2015) Inhibition of Notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem 36(5):1991–2002. https://doi.org/10.1159/000430167

    Article  CAS  PubMed  Google Scholar 

  14. Vujovic S, Henderson SR, Flanagan AM, Clements MO (2007) Inhibition of gamma-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif 40(2):185–195. https://doi.org/10.1111/j.1365-2184.2007.00426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bi P, Yue F, Karki A, Castro B, Wirbisky SE, Wang C et al (2016) Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. J Exp Med 213(10):2019–2037. https://doi.org/10.1084/jem.20160157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chartoumpekis DV, Palliyaguru DL, Wakabayashi N, Khoo NKH, Schoiswohl G, O’Doherty RM, Kensler TW (2015) Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice. MolMetab 4(7):543–550. https://doi.org/10.1016/j.molmet.2015.04.004

    Article  CAS  Google Scholar 

  17. Song NJ, Yun UJ, Yang S, Wu C, Seo CR, Gwon AR et al (2016) Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation. Sci Rep. https://doi.org/10.1038/srep19377

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garcés C, Ruiz-Hidalgo MJ, Font de Mora J, Park C, Miele L, Goldstein J et al (1997) Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 272(47):29729–29734. https://doi.org/10.1074/JBC.272.47.29729

    Article  PubMed  Google Scholar 

  19. Nueda M-L, González-Gómez M-J, Rodríguez-Cano M-M, Monsalve E-M, Díaz-Guerra MJM, Sánchez-Solana B et al (2018) DLK proteins modulate NOTCH signaling to influence a brown or white 3T3-L1 adipocyte fate. Sci Rep 8(1):16923. https://doi.org/10.1038/s41598-018-35252-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Tan J, Du H, Liu X, Wang S, Wu S et al (2018) Notch1 inhibits rosiglitazone-induced adipogenic differentiation in primary thymic stromal cells. Front Pharmacol 9:1284. https://doi.org/10.3389/fphar.2018.01284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sandel DA, Liu M, Ogbonnaya N, Newman JJ (2018) Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells. Biochimie 150:31–36. https://doi.org/10.1016/j.biochi.2018.04.020

    Article  CAS  PubMed  Google Scholar 

  22. Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81(1):715–736. https://doi.org/10.1146/annurev-biochem-052110-115718

    Article  CAS  PubMed  Google Scholar 

  23. Lai P-Y, Tsai C-B, Tseng M-J (2013) Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 430(3):1132–1139. https://doi.org/10.1016/j.bbrc.2012.12.024

    Article  CAS  PubMed  Google Scholar 

  24. Ohashi S, Natsuizaka M, Yashiroohtani Y, Kalman RA, Nakagawa M, Wu L et al (2010) NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a csl-dependent transcriptional network. Gastroenterology 139(6):2113–2123. https://doi.org/10.1053/j.gastro.2010.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M (2003) CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature 426(6963):190–193. https://doi.org/10.1038/nature02110

    Article  CAS  PubMed  Google Scholar 

  26. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131(22):5539–5550. https://doi.org/10.1242/dev.01436

    Article  CAS  PubMed  Google Scholar 

  27. Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Dev Growth Differ 50(SUPPL. 1):S97–S103. https://doi.org/10.1111/j.1440-169X.2008.00993.x

    Article  CAS  PubMed  Google Scholar 

  28. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the BHLH factor Hes1 regulated by a negative feedback loop. Science 298(5594):840–843. https://doi.org/10.1126/science.1074560

    Article  CAS  PubMed  Google Scholar 

  29. Wöltje K, Jabs M, Fischer A (2015) Serum Induces transcription of Hey1 and Hey2 genes by Alk1 but not notch signaling in endothelial cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0120547

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP (2004) Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23(5):1155–1165. https://doi.org/10.1038/sj.emboj.7600069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MCL designed and performed experiments, analyzed data, and contributed significantly to the writing of the manuscript. HL assisted in primer and assay condition optimization. JN supervised the experimental design, research, analysis, and writing of the manuscript. Image credit for Fig. 5 goes to Mr. Tom Futrell, School of Design, Louisiana Tech University. Thank you to Dr. Fokhrul Hossain, Dr. Deniz A. Ucar, and Dr. Lucio Miele for their expertise and advice on Notch signaling. Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant Number P2O GM103424-18 and support from the College of Applied and Natural Sciences at Louisiana Tech University.

Funding

Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant Number P2O GM103424-18 and support from the College of Applied and Natural Sciences at Louisiana Tech University.

Author information

Authors and Affiliations

Authors

Contributions

MCL designed and performed experiments, analyzed data, and contributed significantly to the writing of the manuscript. HL assisted in primer and assay condition optimization. JN supervised the experimental design, research, analysis, and writing of the manuscript. Image credit for Fig. 5 goes to Mr. Tom Futrell, School of Design, Louisiana Tech University.

Corresponding author

Correspondence to Jamie J. Newman.

Ethics declarations

Conflicts of interest

All author declare that they have no conflict of interest.

Availability of data and material

All data and material are available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MC., Logan, H. & Newman, J.J. Distinct roles for Notch1 and Notch3 in human adipose-derived stem/stromal cell adipogenesis. Mol Biol Rep 47, 8439–8450 (2020). https://doi.org/10.1007/s11033-020-05884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05884-8

Keywords

Navigation