Skip to main content
Log in

Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in “auxin-activated signaling pathway”, “water channel activity”, “integral component of plasma membrane”, “stress responses”, and “metabolic processes”. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to “Zeatin biosynthesis”, “Fatty acid elongation”, “Carotenoid biosynthesis”, and “Biosynthesis of secondary metabolites”. Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu JK (2001) Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci 6:66–72. https://doi.org/10.1104/pp.108.4.1387

    Article  CAS  PubMed  Google Scholar 

  2. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  3. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53. https://doi.org/10.1007/s00248-007-9249-7

    Article  PubMed  Google Scholar 

  4. Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57. https://doi.org/10.1007/BF00204058

    Article  Google Scholar 

  5. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  6. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258. https://doi.org/10.1126/science.285.5431.1256

    Article  CAS  PubMed  Google Scholar 

  8. Trivedi DK, Bhatt H, Pal RK, Tuteja R, Garg B, Johri AK, Bhavesh NS, Tuteja N (2013) Structure of RNA-interacting Cyclophilin A-like protein from Piriformospora indica that provides salinity-stress tolerance in plants. Sci Rep 3:300. https://doi.org/10.1038/srep03001

    Article  Google Scholar 

  9. Maach M, Baghour M, Akodad M et al (2020) Overexpression of LeNHX4 improved yield, fruit quality and salt tolerance in tomato plants (Solanum lycopersicum L.). Mol Biol Rep 47(6):4145–4153. https://doi.org/10.1007/s11033-020-05499-z

    Article  CAS  PubMed  Google Scholar 

  10. Grover A, Aggarwal PK, Kapoor A, Katiyar-Agarwal S, Agarwal M, Chandramouli A (2003) Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci 84:355–367

    Google Scholar 

  11. Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71(2):470–479. https://doi.org/10.1093/jxb/erz476

    Article  CAS  PubMed  Google Scholar 

  12. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. https://doi.org/10.1007/s00572-008-0180-7

    Article  CAS  PubMed  Google Scholar 

  13. Tisarum R, Theerawitaya C, Samphumphuang T, Polispitak K, Thongpoem P, Singh HP, Cha-um S (2020) Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front Plant Sci 11:348. https://doi.org/10.3389/fpls.2020.00348

    Article  PubMed  PubMed Central  Google Scholar 

  14. Augé RM, Toler HD, Sams CE, Nasim G (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18(3):115–121. https://doi.org/10.1007/s00572-008-0162-9

    Article  PubMed  Google Scholar 

  15. Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedlings growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306. https://doi.org/10.1007/s00344-009-9136-1

    Article  CAS  Google Scholar 

  16. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317. https://doi.org/10.1007/s00572-003-0237-6

    Article  PubMed  Google Scholar 

  17. Verma S, Varma A, Rexer K, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov, a new root-colonizing fungus. Mycologia 90:896–903. https://doi.org/10.1080/00275514.1998.12026983

    Article  CAS  Google Scholar 

  18. Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59(3):461–474. https://doi.org/10.1111/j.1365-313X.2009.03887.x

    Article  CAS  PubMed  Google Scholar 

  19. Waller F, Achatz B, Baltruschat H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391. https://doi.org/10.1073/pnas.0504423102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gazara RK, de Oliveira EAG, Rodrigues BC et al (2019) Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor. Sci Rep 9:9601. https://doi.org/10.1038/s41598-019-45898-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cadavid IC, Guzman F, de Oliveira-Busatto L, de Almeida RMC, Margis R (2020) Transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep 47:2871–2888. https://doi.org/10.1007/s11033-020-05398-3

    Article  CAS  PubMed  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  23. Johnson JM, Sherameti I, Ludwig A, Nongbri PL, Sun C, Lou B, Varma A, Oelmüller R (2011) Protocols for Arabidopsis thaliana and Piriformospora indicacocultivation: a model system to study plant beneficial traits. Endocyt Cell Res 21:101–113

    Google Scholar 

  24. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Zafar SA, Hameed A, Ashraf M et al (2020) Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. Funct Plant Biol 47(5):440–453. https://doi.org/10.1071/fp19246

    Article  CAS  PubMed  Google Scholar 

  27. Bielach A, Hrtyan M, Tognetti V (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427

    Article  PubMed Central  Google Scholar 

  28. An P, Li X, Zheng Y, Matsuura A, Abe J, Eneji AE, Tanimoto E, Inanaga S (2014) Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance. J Agro Crop Sci 200:212–218. https://doi.org/10.1111/jac.12060

    Article  CAS  Google Scholar 

  29. Fan P, Nie L, Jiang P, Feng J, Lv S, Chen X, Bao H, Guo J, Tai F, Wang J et al (2013) Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS ONE 8:e80595. https://doi.org/10.1371/journal.pone.0080595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204. https://doi.org/10.3389/Ffpls.2018.00204

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/Ffpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li N, Liu H, Sun J et al (2018) Transcriptome analysis of two contrasting rice cultivars during alkaline stress. Sci Rep 8(1):9586. https://doi.org/10.1038/s41598-018-27940-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rahman H, Jagadeeshselvam N, Valarmathi R et al (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA sequencing. Plant Mol Biol 85:485. https://doi.org/10.1007/s11103-014-0199-4

    Article  CAS  PubMed  Google Scholar 

  34. Denancé N, Szurek B, Noël LD (2014) Emerging functions of nodulin-like proteins in nonnodulating plant species. Plant Cell Physiol 55(3):469–474. https://doi.org/10.1093/pcp/pct198

    Article  CAS  PubMed  Google Scholar 

  35. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51:4. https://doi.org/10.1186/s40659-018-0152-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palmer AJ, Baker A, Muench SP (2016) The varied functions of aluminium-activated malate transporters–much more than aluminium resistance. Biochem Soc Trans 44(3):856–862. https://doi.org/10.1042/BST20160027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Golldack D, Quigley F, Michalowski CB et al (2003) Salinity stress tolerant and sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81. https://doi.org/10.1023/A:1020763218045

    Article  CAS  PubMed  Google Scholar 

  38. Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168(3):1076–1090. https://doi.org/10.1104/pp.15.00298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuchs I, Stölzle S, Ivashikina N et al (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221. https://doi.org/10.1007/s00425-004-1437-9

    Article  CAS  PubMed  Google Scholar 

  40. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149. https://doi.org/10.1046/j.1365-313X.2002.01410.x

    Article  CAS  PubMed  Google Scholar 

  41. Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108(2):451–457. https://doi.org/10.1104/pp.108.2.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wagner A, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13(303):318. https://doi.org/10.1105/tpc.13.2.303

    Article  Google Scholar 

  43. Yu J, Zao W, He Q, Kim TS, Park YJ (2017) Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Mol Genet Genomics 292:1391–1403. https://doi.org/10.1007/s00438-017-1354-9

    Article  CAS  PubMed  Google Scholar 

  44. Michal-Johnson J, Lee YC, Camehl I, Sun C, Yeh KW, Oelmuller R (2013) Piriformospora indica promotes growth of chinese cabbage by manipulating auxin homeostasis-role of auxin in symbiosis. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica: sebacinales and their biotechnological applications. Springer, Berlin

    Google Scholar 

  45. Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, LudwigMüller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant 21:1371–1383. https://doi.org/10.1094/MPMI-21-10-1371

    Article  CAS  Google Scholar 

  46. Gardner H (1995) Biological roles and biochemistry of the lipoxygenase pathway. HortScience 30:197. https://doi.org/10.21273/HORTSCI.30.2.197

  47. Kang D, Seo Y, Lee J, Ishii R, Kim K, Shin D, Park S, Jang S, Lee I (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt sensitive rice cultivars. J Agron Crop Sci 191:273–282. https://doi.org/10.1111/j.1439-037X.2005.00153.x

    Article  CAS  Google Scholar 

  48. Keskin BC, Sarikaya AT, Yüksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  49. Jung H, Lee DK, Choi YD, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312. https://doi.org/10.1016/j.plantsci.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  50. Qiu T, Qi M, Ding X et al (2020) The SAUR41 subfamily of SMALL AUXIN UP RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Ann Bot 125(5):805–819. https://doi.org/10.1093/aob/mcz160

    Article  PubMed  Google Scholar 

  51. Carvalho AO, Gomes VM (2011) Plant defensins and defensin-like peptides- biological activities and biotechnological applications. Curr Pharm Design 17(38):4270–4293. https://doi.org/10.2174/138161211798999447

    Article  CAS  Google Scholar 

  52. Figueiredo A, Monteiro F, Sebastiana M (2014) Subtilisin-like proteases in plant-pathogen recognition and immune priming: a perspective. Front Plant Sci 5:739. https://doi.org/10.3389/fpls.2014.00739

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sharma A, Hussain A, Mun BG, Imran QM, Falak N, Lee SU, Yun BW (2016) Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol Biochem 106:82–90. https://doi.org/10.1016/j.plaphy.2016.03.037

    Article  CAS  PubMed  Google Scholar 

  54. Cosgrove D (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. https://doi.org/10.1038/nrm1746

    Article  CAS  PubMed  Google Scholar 

  55. Eklöf JM, Brumer H (2010) The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol 153:456–466. https://doi.org/10.1104/pp.110.156844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160. https://doi.org/10.1093/jxb/eru272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R (2015) An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci 6:146. https://doi.org/10.3389/fpls.2015.00146

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lamport DTA, Kieliszewski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169:479–492. https://doi.org/10.1111/j.1469-8137.2005.01591.x

    Article  CAS  PubMed  Google Scholar 

  59. Zhao C, Zayed O, Zeng F et al (2019) Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytol 224(1):274–290. https://doi.org/10.1111/nph.15867

    Article  CAS  PubMed  Google Scholar 

  60. Liang J, Guo S, Sun B, Liu Q, Chen X, Peng H, Zhang Z, Xie Q (2018) Constitutive expression of REL1 confers the rice response to drought stress and abscisic acid. Rice (New York, NY) 11(1):59. https://doi.org/10.1186/s12284-018-0251-0

    Article  Google Scholar 

  61. Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter WD (2003) The MUR3 gene of arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15(7):1662–1670. https://doi.org/10.1105/tpc.009837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu J, Lee BH, Dellinger M, Cui X, Zhang C, Wu S, Nothnagel EA, Zhu JK (2010) A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J 63(1):128–140. https://doi.org/10.1111/j.1365-313X.2010.04227.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li W, Shao M, Yang J, Zhong W, Okada K, Yamane H, Qian G, Liu F (2013) Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Plant Sci 207:98–107. https://doi.org/10.1016/j.plantsci.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  64. Chen M, Xu J, Devis D, Shi J, Ren K, Searle I, Zhang D (2016) Origin and functional prediction of pollen allergens in plants. Plant physiol 172(1):341–357. https://doi.org/10.1104/pp.16.00625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pii Y, Astegno A, Peroni E, Zaccardelli M, Pandolfini T, Crimi M (2009) The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant Microbe Interact 22(12):1577–1587. https://doi.org/10.1094/MPMI-22-12-1577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi (Grant Sanction Number SB/YS/LS-111/2014 2014) is greatly acknowledged. The authors are also grateful to AgriGenome Labs Pvt Ltd team for transcriptome sequencing and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

N conducted the experiments and wrote the initial drafts of manuscript. RKG performed the data analysis, and helped in the manuscript editing. SK contributed in performing quantitative RT-PCR for data validation. SI and KA contributed in sample collection and RNA extraction. N and MZA planned and designed the research, evaluated the scientific implications of the transcriptome data, and prepared the final maunscript. All author approved the final manuscript.

Corresponding author

Correspondence to Malik Z. Abdin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The present study did not involve any Human participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivedita, Gazara, R.K., Khan, S. et al. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 47, 7655–7673 (2020). https://doi.org/10.1007/s11033-020-05839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05839-z

Keywords

Navigation