Skip to main content
Log in

Identification of two core genes in glioblastomas with different isocitrate dehydrogenase mutation status

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is one of the most common malignancies of the central nervous system, and the Isocitrate Dehydrogenase (IDH) mutation status of GBM has been recognized as a critical prognostic indicator. However, the molecular mechanism underlying the GBM with different IDH mutation status is still not unclear. In this study, a total of 353 DEGs including 207 up-regulated and 146 down-regulated were screened from multiple GBM data sets. Moreover, the biological processes and pathways enriched by DEGs were mainly associated with tumor progression, especially invasion and migration. Then, eight hub genes, including SDC4, SERPINE1, TNC, THBS1, COL1A1, CXCL8, TIMP1 and VEGFA, were selected from a PPI network. Finally, core genes, SERPINE1 and TIMP1, were identified from hub genes by survival analysis and sample validation. Overall, in this study, we revealed underlying molecular mechanisms in GBMs with different IDH mutation status and identified core genes that could be potential markers and targets for diagnosis and treatment of GBMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  2. Perry JR, Laperriere N, O’Callaghan CJ et al (2017) Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 376:1027–1037. https://doi.org/10.1056/NEJMoa1611977

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  4. Wechsler-Reya R, Scott MP (2001) The developmental biology of brain tumors. Annu Rev Neurosci 24:385–428. https://doi.org/10.1146/annurev.neuro.24.1.385

    Article  CAS  PubMed  Google Scholar 

  5. Huse JT, Holland E, DeAngelis LM (2013) Glioblastoma: molecular analysis and clinical implications. Annu Rev Med 64:59–70. https://doi.org/10.1146/annurev-med-100711-143028

    Article  CAS  PubMed  Google Scholar 

  6. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci 110:4009–4014. https://doi.org/10.1073/pnas.1219747110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  9. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508. https://doi.org/10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cohen AL, Holmen SL, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13:345. https://doi.org/10.1007/s11910-013-0345-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turkalp Z, Karamchandani J, Das S (2014) IDH mutation in glioma. JAMA Neurol 71:1319. https://doi.org/10.1001/jamaneurol.2014.1205

    Article  PubMed  Google Scholar 

  12. Berghoff AS, Kiesel B, Widhalm G et al (2017) Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol 19:1460–1468. https://doi.org/10.1093/neuonc/nox054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan Y-B, Zhang C-H, Wang S-Q et al (2018) Transforming growth factor beta induced (TGFBI) is a potential signature gene for mesenchymal subtype high-grade glioma. J Neurooncol 137:395–407. https://doi.org/10.1007/s11060-017-2729-9

    Article  CAS  PubMed  Google Scholar 

  14. Han M-Z, Wang S, Zhao W-B et al (2019) Immune checkpoint molecule herpes virus entry mediator is overexpressed and associated with poor prognosis in human glioblastoma. EBioMedicine 43:159–170. https://doi.org/10.1016/j.ebiom.2019.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reon BJ, Anaya J, Zhang Y et al (2016) Expression of lncRNAs in low-grade gliomas and glioblastoma multiforme: an in silico analysis. PLOS Med 13:e1002192. https://doi.org/10.1371/journal.pmed.1002192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao K, Wu B, Xi M et al (2015) Distant dissemination of mixed low-grade astroblastoma-arteriovenous malformation after initial operation: a case report. Int J Clin Exp Pathol 8:7450–7456

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kun Y, Duan Z, Mei X et al (2015) A rare case of malignant pediatric ectomesenchymoma arising from the cerebrum. Int J Clin Exp Pathol 8:8545–8550

    PubMed  PubMed Central  Google Scholar 

  19. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. https://doi.org/10.15252/embr.201439246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156. https://doi.org/10.1038/nrd4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. https://doi.org/10.1038/nrm2009

    Article  CAS  PubMed  Google Scholar 

  22. Ohkawara B, Glinka A, Niehrs C (2011) Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev Cell 20:303–314. https://doi.org/10.1016/j.devcel.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  23. Chen LL, Gao GX, Shen FX et al (2018) SDC4 gene silencing favors human papillary thyroid carcinoma cell apoptosis and inhibits epithelial mesenchymal transition via wnt/β-catenin pathway. Mol Cells 41:853–867. https://doi.org/10.14348/molcells.2018.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kosmopoulos M, Christofides A, Drekolias D et al (2018) Critical role of IL-8 targeting in gliomas. Curr Med Chem 25:1954–1967. https://doi.org/10.2174/0929867325666171129125712

    Article  CAS  PubMed  Google Scholar 

  25. Raychaudhuri B, Vogelbaum MA (2011) IL-8 is a mediator of NF-κB induced invasion by gliomas. J Neurooncol 101:227–235. https://doi.org/10.1007/s11060-010-0261-2

    Article  CAS  PubMed  Google Scholar 

  26. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133. https://doi.org/10.1215/S1152851704001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang Y, He J, Guo Y et al (2019) Identification of genes related to low-grade glioma progression and prognosis based on integrated transcriptome analysis. J Cell Biochem. https://doi.org/10.1002/jcb.29577

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hayashi M, Nomoto S, Hishida M et al (2014) Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer 14:1–10. https://doi.org/10.1186/1471-2407-14-108

    Article  CAS  Google Scholar 

  29. Wang Q, Yu J (2018) MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem Cell Biol 96:19–25. https://doi.org/10.1139/bcb-2016-0254

    Article  CAS  PubMed  Google Scholar 

  30. Sun S, Wang Y, Wu Y et al (2018) Identification of COL1A1 as an invasion-related gene in malignant astrocytoma. Int J Oncol 53:2542–2554. https://doi.org/10.3892/ijo.2018.4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259. https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<235:AID-DVDY2>3.3.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  32. Qi J, Esfahani DR, Huang T et al (2019) Tenascin-C expression contributes to pediatric brainstem glioma tumor phenotype and represents a novel biomarker of disease. Acta Neuropathol Commun 7:75. https://doi.org/10.1186/s40478-019-0727-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia S, Lal B, Tung B et al (2016) Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol 18:507–517. https://doi.org/10.1093/neuonc/nov171

    Article  CAS  PubMed  Google Scholar 

  34. Sarkar S, Mirzaei R, Zemp FJ et al (2017) Activation of NOTCH signaling by tenascin-C promotes growth of human brain tumor-initiating cells. Cancer Res 77:3231–3243. https://doi.org/10.1158/0008-5472.CAN-16-2171

    Article  CAS  PubMed  Google Scholar 

  35. Roberts DD (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 10:1183–1191. https://doi.org/10.1096/fasebj.10.10.8751720

    Article  CAS  PubMed  Google Scholar 

  36. Tuszynski GP, Nicosia RF (1996) The role of thrombospondin-1 in tumor progression and angiogenesis. BioEssays 18:71–76. https://doi.org/10.1002/bies.950180113

    Article  CAS  PubMed  Google Scholar 

  37. Seliger C, Leukel P, Moeckel S et al (2013) Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One 8:e78935. https://doi.org/10.1371/journal.pone.0078935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Q, Liao F, Wu H et al (2016) Different expression of miR-29b and VEGFA in glioma. Artif Cells Nanomed Biotechnol 44:1927–1932. https://doi.org/10.3109/21691401.2015.1111237

    Article  CAS  PubMed  Google Scholar 

  39. Ye J, Zhu J, Chen H et al (2020) A novel lncRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer 146:248–261. https://doi.org/10.1002/ijc.32483

    Article  CAS  PubMed  Google Scholar 

  40. Hu Y, Li Y, Wu C et al (2017) MicroRNA-140-5p inhibits cell proliferation and invasion by regulating VEGFA/MMP2 signaling in glioma. Tumor Biol 39:101042831769755. https://doi.org/10.1177/1010428317697558

    Article  CAS  Google Scholar 

  41. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  42. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ulisse S, Baldini E, Sorrenti S, D’Armiento M (2009) The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 9:32–71. https://doi.org/10.2174/156800909787314002

    Article  CAS  PubMed  Google Scholar 

  44. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312. https://doi.org/10.1200/JCO.2007.14.2364

    Article  CAS  PubMed  Google Scholar 

  45. Strojan P, Budihna M, Šmid L et al (1998) Urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in tissue and serum of head and neck squamous cell carcinoma patients. Eur J Cancer 34:1193–1197. https://doi.org/10.1016/S0959-8049(98)00029-X

    Article  CAS  PubMed  Google Scholar 

  46. Chin D, Boyle GM, Williams RM et al (2005) Novel markers for poor prognosis in head and neck cancer. Int J Cancer 113:789–797. https://doi.org/10.1002/ijc.20608

    Article  CAS  PubMed  Google Scholar 

  47. Wu D-M, Wang S, Wen X et al (2018) MircoRNA-1275 promotes proliferation, invasion and migration of glioma cells via SERPINE1. J Cell Mol Med 22:4963–4974. https://doi.org/10.1111/jcmm.13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seker F, Cingoz A, Sur-Erdem İ et al (2019) Identification of SERPINE1 as a regulator of glioblastoma cell dispersal with transcriptome profiling. Cancers (Basel) 11:1651. https://doi.org/10.3390/cancers11111651

    Article  CAS  Google Scholar 

  49. Holten-Andersen M, Christensen IJ, Nilbert M et al (2004) Association between preoperative plasma levels of tissue inhibitor of metalloproteinases 1 and rectal cancer patient survival. Eur J Cancer 40:64–72. https://doi.org/10.1016/j.ejca.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  50. Birgisson H, Nielsen HJ, Christensen IJ et al (2010) Preoperative plasma TIMP-1 is an independent prognostic indicator in patients with primary colorectal cancer: a prospective validation study. Eur J Cancer 46:3323–3331. https://doi.org/10.1016/j.ejca.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  51. Cheng G, Fan X, Hao M et al (2016) Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Mol Cancer 15:30. https://doi.org/10.1186/s12943-016-0515-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schrohl A-S (2004) Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer. Clin Cancer Res 10:2289–2298. https://doi.org/10.1158/1078-0432.CCR-03-0360

    Article  CAS  PubMed  Google Scholar 

  53. Yoshikawa T, Cho H, Tsuburaya A, Kobayashi O (2009) Impact of plasma tissue inhibitor of metalloproteinase-1 on long-term survival in patients with gastric cancer. Gastric Cancer 12:31–36. https://doi.org/10.1007/s10120-008-0494-3

    Article  CAS  PubMed  Google Scholar 

  54. Rauvala M, Puistola U, Turpeenniemihujanen T (2005) Gelatinases and their tissue inhibitors in ovarian tumors; TIMP-1 is a predictive as well as a prognostic factor. Gynecol Oncol 99:656–663. https://doi.org/10.1016/j.ygyno.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  55. Song G, Xu S, Zhang H et al (2016) TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res 35:1–12. https://doi.org/10.1186/s13046-016-0427-7

    Article  CAS  Google Scholar 

  56. Aaberg-Jessen C, Christensen K, Offenberg H et al (2009) Low expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) in glioblastoma predicts longer patient survival. J Neurooncol 95:117–128. https://doi.org/10.1007/s11060-009-9910-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Yu.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, X., Ning, W. et al. Identification of two core genes in glioblastomas with different isocitrate dehydrogenase mutation status. Mol Biol Rep 47, 7477–7488 (2020). https://doi.org/10.1007/s11033-020-05804-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05804-w

Keywords

Navigation