Skip to main content
Log in

Current perspectives on the dysregulated microRNAs in gastric cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Since gastric cancer (GC) is diagnosed at advanced stages, the survival rate is low in affected people. In this regard, investigating the mechanisms underlying GC development, are so critical. MiRNAs, which are small non coding RNAs, as a post transcriptional repressor, regulate expression of target genes by stimulating breakage or transcription suppression of their targets therefore aberrant expression of miRNAs leading to GC carcinogenesis. In the last decades, there have been various studies approving the pivotal role of miRNAs in various phases of GC development including cancer initiation, proliferation, migration, invasion, metastasis, angiogenesis, apoptosis, and drug resistance. Therefore, the present review aimed at summarizing the dysregulated miRNAs which contribute to various cellular and developmental mechanisms such as, proliferation, apoptosis, invasion, migration, and angiogenesis. Moreover, it provides an overview on novel miRNAs involved in drug resistance and circular miRNAs as cancer biomarkers. Thereafter, it is hoped that the present study will shed more light on diagnostic and prognostic biomarkers of GC, and potential GC treatments based on miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yuan HL, Wang T, Zhang KH (2018) MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. OncoTargets Ther 11:3891–3900. https://doi.org/10.2147/ott.s156921

    Article  CAS  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Board PDQATE (2002) Gastric cancer treatment (PDQ(R)): patient version. In: PDQ cancer information summaries. National Cancer Institute (US), Bethesda (MD)

  4. Chen XZ, Huang CZ, Hu WX, Liu Y, Yao XQ (2018) Gastric cancer screening by combined determination of serum helicobacter pylori antibody and pepsinogen concentrations: ABC method for gastric cancer screening. Chin Med J 131(10):1232–1239. https://doi.org/10.4103/0366-6999.231512

    Article  PubMed  PubMed Central  Google Scholar 

  5. Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol 25(17):2029–2044. https://doi.org/10.3748/wjg.v25.i17.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sekine S, Yoshida H, Jansen M, Kushima R (2016) The Japanese viewpoint on the histopathology of early gastric cancer. Adv Exp Med Biol 908:331–346. https://doi.org/10.1007/978-3-319-41388-4_16

    Article  PubMed  Google Scholar 

  7. Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Peer G, Mets E, Claeys S, De Punt I, Lefever S, Ongenaert M, Rondou P, Speleman F, Mestdagh P, Vandesompele J (2018) A high-throughput 3′ UTR reporter screening identifies microRNA interactomes of cancer genes. PLoS One 13(3):e0194017. https://doi.org/10.1371/journal.pone.0194017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hejazi M, Baghbani E, Amini M, Rezaei T, Aghanejad A, Mosafer J, Mokhtarzadeh A, Baradaran B (2020) MicroRNA-193a and taxol combination: a new strategy for treatment of colorectal cancer. J Cell Biochem 121(2):1388–1399. https://doi.org/10.1002/jcb.29374

    Article  CAS  PubMed  Google Scholar 

  10. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780. https://doi.org/10.1038/sj.bjc.6603023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Azarbarzin S, Feizi MAH, Safaralizadeh R, Kazemzadeh M, Fateh A (2017) The value of MiR-383, an intronic MiRNA, as a diagnostic and prognostic biomarker in intestinal-type gastric cancer. Biochem Genet 55(3):244–252. https://doi.org/10.1007/s10528-017-9793-x

    Article  CAS  PubMed  Google Scholar 

  13. Azarbarzin S, Hosseinpour Feizi MA, Safaralizadeh R, Ravanbakhsh R, Kazemzadeh M, Fateh A, Karimi N, Moaddab Y (2016) The value of miR-299-5p in diagnosis and prognosis of intestinal-type gastric adenocarcinoma. Biochem Genet 54(4):413–420. https://doi.org/10.1007/s10528-016-9728-y

    Article  CAS  PubMed  Google Scholar 

  14. Safaralizadeh R, Ajami N, Nemati M, Hosseinpourfeizi M, Azimzadeh Isfanjani A, Moaddab SY (2019) Disregulation of miR-216a and miR-217 in gastric cancer and their clinical significance. J Gastrointest Cancer 50(1):78–83. https://doi.org/10.1007/s12029-017-0019-6

    Article  CAS  PubMed  Google Scholar 

  15. Shomali N, Mansoori B, Mohammadi A, Shirafkan N, Ghasabi M, Baradaran B (2017) MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother 96:238–245. https://doi.org/10.1016/j.biopha.2017.09.138

    Article  CAS  PubMed  Google Scholar 

  16. Azarbarzin S, Feizi M, Safaralizadeh R, Ravanbakhsh R, Karimi N, Kazemzadeh M, Fateh A, Sadat A, Somi M (2016) Reduced expression of miR-411 in intestinal type of gastric adenocarcinoma. Meta Gene 10:23–26. https://doi.org/10.1016/j.mgene.2016.09.005

    Article  Google Scholar 

  17. Ruijtenberg S, van den Heuvel S (2016) Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle (Georgetown, Tex) 15(2):196–212. https://doi.org/10.1080/15384101.2015.1120925

    Article  CAS  Google Scholar 

  18. Bueno MJ (1812) Malumbres M (2011) MicroRNAs and the cell cycle. Biochem Biophys Acta 5:592–601. https://doi.org/10.1016/j.bbadis.2011.02.002

    Article  CAS  Google Scholar 

  19. Hu X, Miao J, Zhang M, Wang X, Wang Z, Han J, Tong D, Huang C (2018) miRNA-103a-3p promotes human gastric cancer cell proliferation by targeting and suppressing ATF7 in vitro. Mol Cells 41(5):390–400. https://doi.org/10.14348/molcells.2018.2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song B, Du J, Song DF, Ren JC, Feng Y (2018) Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer. Biol Res 51(1):44. https://doi.org/10.1186/s40659-018-0192-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian L, Wang ZY, Hao J, Zhang XY (2018) miR-505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1. J Cell Biochem. https://doi.org/10.1002/jcb.28082

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Sheng N, Pan L, Cao J, Liu J, Ma R (2018) microRNA-3129 promotes cell proliferation in gastric cancer cell line SGC7901 via positive regulation of pRb. Brazilian j med biol res 51(6):e6452. https://doi.org/10.1590/1414-431x20186452

    Article  CAS  Google Scholar 

  23. Xiao C, Hong H, Yu H, Yuan J, Guo C, Cao H, Li W (2018) MiR-340 affects gastric cancer cell proliferation, cycle, and apoptosis through regulating SOCS3/JAK-STAT signaling pathway. Immunopharmacol Immunotoxicol 40(4):278–283. https://doi.org/10.1080/08923973.2018.1455208

    Article  CAS  PubMed  Google Scholar 

  24. Jin Y, Tao LP, Yao SC, Huang QK, Chen ZF, Sun YJ, Jin SQ (2017) MicroRNA-582-5p suppressed gastric cancer cell proliferation via targeting AKT3. Eur Rev Med Pharmacol Sci 21(22):5112–5120. https://doi.org/10.26355/eurrev_201711_13827

    Article  CAS  PubMed  Google Scholar 

  25. Hu X, Zhang M, Miao J, Wang X, Huang C (2018) miRNA-4317 suppresses human gastric cancer cell proliferation by targeting ZNF322. Cell Biol Int 42(8):923–930. https://doi.org/10.1002/cbin.10870

    Article  CAS  PubMed  Google Scholar 

  26. Guo B, Zhao Z, Wang Z, Li Q, Wang X, Wang W, Song T, Huang C (2017) MicroRNA-302b-3p suppresses cell proliferation through AKT pathway by targeting IGF-1R in human gastric cancer. Cell Physiol Biochem 42(4):1701–1711. https://doi.org/10.1159/000479419

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, He Y, McLeod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, Ge J, Li L, Tang L, Ma J, Chen Z (2017) miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/beta-catenin/EMT signaling cascade in gastric cancer. BMC Cancer 17(1):886. https://doi.org/10.1186/s12885-017-3875-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou J, Xu Y (2016) MicroRNA-140 inhibits cell proliferation in gastric cancer cell line HGC-27 by suppressing SOX4. Med Sci Monit Int Med J Exp Clin Res 22:2243–2252

    CAS  Google Scholar 

  29. Jiang M, Shi L, Yang C, Ge Y, Lin L, Fan H, He Y, Zhang D, Miao Y, Yang L (2019) miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis 10(1):32. https://doi.org/10.1038/s41419-018-1262-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, Zhang XT, Gao YJ, Ge ZZ (2018) RAB31 targeted by MiR-30c-2-3p regulates the GLI1 signaling pathway, affecting gastric cancer cell proliferation and apoptosis. Front Oncol 8:554. https://doi.org/10.3389/fonc.2018.00554

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun KK, Shen XJ, Yang D, Gan MQ, Liu G, Zhang YF, Hua P, Wang HD, Wu XY (2019) MicroRNA-31 triggers G2/M cell cycle arrest, enhances the chemosensitivity and inhibits migration and invasion of human gastric cancer cells by downregulating the expression of zeste homolog 2 (ZH2). Arch Biochem Biophys 663:269–275. https://doi.org/10.1016/j.abb.2019.01.023

    Article  CAS  PubMed  Google Scholar 

  32. Deng G, Mou T, He J, Chen D, Daojun L, Liu H, Yu J, Wang S, Li G (2020) Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res 39:1. https://doi.org/10.1186/s13046-019-1487-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu K, Yu Z, Tang Z, Wei W, Xie D, Xie Y, Xiao Q (2020) miR-877-5p suppresses gastric cancer cell proliferation through targeting FOXM1. OncoTargets Ther 13:4731–4742. https://doi.org/10.2147/OTT.S251916

    Article  Google Scholar 

  34. Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med (1957) 89(1):50–55. https://doi.org/10.15386/cjmed-512

    Article  Google Scholar 

  35. Yu L, Zhou GQ, Li DC (2018) MiR-136 triggers apoptosis in human gastric cancer cells by targeting AEG-1 and BCL2. Eur Rev Med Pharmacol Sci 22(21):7251–7256. https://doi.org/10.26355/eurrev_201811_16259

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Wei Y, Li S, Li Y, Liu H, Liu J, Zhu X (2018) MicroRNA-744 promotes cell apoptosis via targeting B cell lymphoma-2 in gastric cancer cell line SGC-7901. Exp Ther Med 16(4):3611–3616. https://doi.org/10.3892/etm.2018.6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan L, Tan B, Li Y, Zhao Q, Yuan H, Liu Y, Wang D, Zhang Z (2018) Upregulation of miR185 promotes apoptosis of the human gastric cancer cell line MGC803. Mol Med Rep 17(2):3115–3122. https://doi.org/10.3892/mmr.2017.8206

    Article  CAS  PubMed  Google Scholar 

  38. Li B, Wang L, Li Z, Wang W, Zhi X, Huang X, Zhang Q, Chen Z, Zhang X, He Z, Xu J, Zhang L, Xu H, Zhang D, Xu Z (2017) miR-3174 contributes to apoptosis and autophagic cell death defects in gastric cancer cells by targeting ARHGAP10. Mol Ther Nucleic acids 9:294–311. https://doi.org/10.1016/j.omtn.2017.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Xian Q, Liu S (2018) Micro RNA-518 inhibits gastric cancer cell growth by inducing apoptosis via targeting MDM2. Biomed Pharmacother 97:1595–1602. https://doi.org/10.1016/j.biopha.2017.11.091

    Article  CAS  PubMed  Google Scholar 

  40. Hu X, Wang Y, Liang H, Fan Q, Zhu R, Cui J, Zhang W, Zen K, Zhang CY, Hou D, Zhou Z, Chen X (2017) miR-23a/b promote tumor growth and suppress apoptosis by targeting PDCD4 in gastric cancer. Cell Death Dis 8(10):e3059. https://doi.org/10.1038/cddis.2017.447

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yin K, Liu M, Zhang M, Wang F, Fen M, Liu Z, Yuan Y, Gao S, Yang L, Zhang W, Zhang J, Guo B, Xu J, Liang H, Chen X, Guan W (2016) miR-208a-3p suppresses cell apoptosis by targeting PDCD4 in gastric cancer. Oncotarget 7(41):67321–67332. https://doi.org/10.18632/oncotarget.12006

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Bai J, Si W, Yuan S, Li Y, Chen X (2020) SLC39A7, regulated by miR-139-5p, induces cell proliferation, migration and inhibits apoptosis in gastric cancer via Akt/mTOR signaling pathway. Biosci Rep 40(2). https://doi.org/10.1042/bsr20200041

  43. Wei S, Peng L, Yang J, Sang H, Jin D, Li X, Chen M, Zhang W, Dang Y, Zhang G (2020) Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J Exp Clin Cancer Res CR 39(1):32. https://doi.org/10.1186/s13046-019-1511-6

    Article  CAS  PubMed  Google Scholar 

  44. Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W (2017) MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 8(70):115787–115802. https://doi.org/10.18632/oncotarget.23115

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126(6):1283–1290. https://doi.org/10.1002/ijc.25014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Son H, Moon A (2010) Epithelial-mesenchymal transition and cell invasion. Toxicol Res 26(4):245–252. https://doi.org/10.5487/tr.2010.26.4.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis FM, Stewart TA, Thompson EW, Monteith GR (2014) Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 35(9):479–488. https://doi.org/10.1016/j.tips.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  48. Feng Y, Bai F, You Y, Bai F, Wu C, Xin R, Li X, Nie Y (2018) Dysregulated microRNA expression profiles in gastric cancer cells with high peritoneal metastatic potential. Exp Ther Med 16(6):4602–4608. https://doi.org/10.3892/etm.2018.6783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, Zhang Y, Miao Y, Liu H, Zhou F (2018) MicroRNA-181a functions as an oncogene in gastric cancer by targeting Caprin-1. Front Pharmacol 9:1565. https://doi.org/10.3389/fphar.2018.01565

    Article  CAS  PubMed  Google Scholar 

  50. Zhou H, Liu H, Jiang M, Zhang S, Chen J, Fan X (2019) Targeting microRNA-21 suppresses gastric cancer cell proliferation and migration via PTEN/Akt signaling axis. Cell Transplant 28(3):306–317. https://doi.org/10.1177/0963689719825573

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang L, Zhang S, Guo K, Huang H, Qi S, Yao J, Zhang Z (2019) miR-125a restrains cell migration and invasion by targeting STAT3 in gastric cancer cells. OncoTargets Ther 12:205–215. https://doi.org/10.2147/ott.s168454

    Article  CAS  Google Scholar 

  52. Wang F (2019) miR-384 targets metadherin gene to suppress growth, migration, and invasion of gastric cancer cells. J Int Med Res 47(2):926–935. https://doi.org/10.1177/0300060518817171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao L, Fan W, Fan Y, Gao S (2018) MicroRNA-214 promotes the proliferation, migration and invasion of gastric cancer MKN28 cells by suppressing the expression of Dact2. Exp Ther Med 16(6):4909–4917. https://doi.org/10.3892/etm.2018.6771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo H, Ji F, Zhao X, Yang X, He J, Huang L, Zhang Y (2019) MicroRNA-371a-3p promotes progression of gastric cancer by targeting TOB1. Cancer Lett 443:179–188. https://doi.org/10.1016/j.canlet.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  55. Zhu Y, Li L, Hou D, Ouyang Y, Guo X, Wang Y, Li J, Gong K (2018) MicroRNA-19a regulates the proliferation, migration and invasion of human gastric cancer cells by targeting CUL5. Arch Biochem Biophys 662:93–100. https://doi.org/10.1016/j.abb.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  56. Wang T, Hou J, Jian S, Luo Q, Wei J, Li Z, Wang X, Bai P, Duan B, Xing J, Cai J (2018) miR-29b negatively regulates MMP2 to impact gastric cancer development by suppress gastric cancer cell migration and tumor growth. J Cancer 9(20):3776–3786. https://doi.org/10.7150/jca.26263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma L, Chen X, Li C, Cheng R, Gao Z, Meng X, Sun C, Liang C, Liu Y (2018) miR-129-5p and -3p co-target WWP1 to suppress gastric cancer proliferation and migration. J Cell Biochem. https://doi.org/10.1002/jcb.28027

    Article  PubMed  Google Scholar 

  58. Zhang H, Li L, Yuan C, Wang C, Gao T, Zheng Z (2020) MiR-489 inhibited the development of gastric cancer via regulating HDAC7 and PI3K/AKT pathway. World J Surg Oncol 18(1):73. https://doi.org/10.1186/s12957-020-01846-3

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meng L, Chen Z, Jiang Z, Huang T, Hu J, Luo P, Zhang H, Huang M, Huang L, Chen Y, Lu M, Xu AM, Ying S (2019) MiR-122-5p suppresses the proliferation, migration, and invasion of gastric cancer cells by targeting LYN. Acta Biochim Biophys Sin 52(1):49–57. https://doi.org/10.1093/abbs/gmz141

    Article  Google Scholar 

  60. Kawagoe K, Wada M, Idichi T, Okada R, Yamada Y, Moriya S, Okubo K, Matsushita D, Arigami T, Kurahara H, Maemura K, Natsugoe S, Seki N (2020) Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer. J Hum Genet 65(8):647–656. https://doi.org/10.1038/s10038-020-0746-6

    Article  PubMed  Google Scholar 

  61. Yu T, Gong L, Li W, Zuo Q, Cai D, Mao H, Wang L, Lin J, Xiao B (2020) MiR-30a suppresses metastasis of gastric adenocarcinoma via targeting FAPα. Cancer Biomark 27:1–14. https://doi.org/10.3233/CBM-190314

    Article  CAS  Google Scholar 

  62. Li J, Ye D, Shen P, Liu X, Zhou P, Zhu G, Xu Y, Fu Y, Li X, Sun J, Xu J, Zhang Q (2020) Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway. https://doi.org/10.21203/rs.3.rs-37466/v1

  63. Mei J-W, Yang Z-Y, Xiang H-G, Bao R, Ye Y-Y, Ren T, Wang X-F, Shu Y-J (2019) MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1. BMC Cancer 19(1):740. https://doi.org/10.1186/s12885-019-5929-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanchez V, Golyardi F, Mayaki D, Echavarria R, Harel S, Xia J, Hussain SNA (2019) Negative regulation of angiogenesis by novel micro RNAs. Pharmacol Res 139:173–181. https://doi.org/10.1016/j.phrs.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  65. Wu ZH, Lin C, Liu CC, Jiang WW, Huang MZ, Liu X, Guo WJ (2018) MiR-616-3p promotes angiogenesis and EMT in gastric cancer via the PTEN/AKT/mTOR pathway. Biochem Biophys Res Commun 501(4):1068–1073. https://doi.org/10.1016/j.bbrc.2018.05.109

    Article  CAS  PubMed  Google Scholar 

  66. Si Y, Zhang H, Ning T, Bai M, Wang Y, Yang H, Wang X, Li J, Ying G, Ba Y (2017) miR-26a/b inhibit tumor growth and angiogenesis by targeting the HGF-VEGF axis in gastric carcinoma. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 42(4):1670–1683. https://doi.org/10.1159/000479412

    Article  CAS  Google Scholar 

  67. Xie M, Dart DA, Guo T, Xing XF, Cheng XJ, Du H, Jiang WG, Wen XZ, Ji JF (2018) MicroRNA-1 acts as a tumor suppressor microRNA by inhibiting angiogenesis-related growth factors in human gastric cancer. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc 21(1):41–54. https://doi.org/10.1007/s10120-017-0721-x

    Article  CAS  Google Scholar 

  68. Zhang X, Dong J, He Y, Zhao M, Liu Z, Wang N, Jiang M, Zhang Z, Liu G, Liu H, Nie Y, Fan D, Tie J (2017) miR-218 inhibited tumor angiogenesis by targeting ROBO1 in gastric cancer. Gene 615:42–49. https://doi.org/10.1016/j.gene.2017.03.022

    Article  CAS  PubMed  Google Scholar 

  69. Du J, Liang Y, Li J, Zhao J-M, Wang Z-N, Lin X-Y (2020) Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN. Front Oncol 10:326. https://doi.org/10.3389/fonc.2020.00326

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang S, Zhang R, Xu R, Shang J, He H, Yang Q (2020) MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3). Gene 733:144383. https://doi.org/10.1016/j.gene.2020.144383

    Article  CAS  PubMed  Google Scholar 

  71. Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, Wang X, Si Y, Ning T, Zhang L, Li H, Ge S, Liu R, Lin D, Li S, Ying G, Ba Y (2020) Exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF axis of endothelial cells. Mol Ther Nucleic Acids 19:1449–1459. https://doi.org/10.1016/j.omtn.2020.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi Y, Huang X, Chen G, Wang Y, Liu Y, Xu W, Tang S, Guleng B, Liu J, Ren J (2019) MiR-632 promotes gastric cancer progression by accelerating angiogenesis in a TFF1-dependent manner. BMC Cancer 19:14. https://doi.org/10.1186/s12885-018-5247-z

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science (New York, NY) 293(5531):876–880. https://doi.org/10.1126/science.1062538

    Article  CAS  Google Scholar 

  74. Wang J, Seebacher N, Shi H, Kan Q, Duan Z (2017) Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget 8(48):84559–84571. https://doi.org/10.18632/oncotarget.19187

    Article  PubMed  PubMed Central  Google Scholar 

  75. McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS (2015) Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 57:75–101. https://doi.org/10.1016/j.jbior.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  76. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang W, Ma J, Zhou W, Cao B, Zhou X, Yang Z, Zhang H, Zhao Q, Fan D, Hong L (2017) Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets 21(11):1063–1075. https://doi.org/10.1080/14728222.2017.1389900

    Article  CAS  PubMed  Google Scholar 

  78. Cao W, Wei W, Zhan Z, Xie D, Xie Y, Xiao Q (2018) Regulation of drug resistance and metastasis of gastric cancer cells via the microRNA647-ANK2 axis. Int J Mol Med 41(4):1958–1966. https://doi.org/10.3892/ijmm.2018.3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A, Tommasi S (2016) Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther 17:00–00. https://doi.org/10.1080/15384047.2016.1139244

    Article  CAS  Google Scholar 

  80. Lin W, Miao Y, Meng X, Huang Y, Zhao W, Ruan J (2020) miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells. FEBS Open Bio 10(6) :1021–1030. https://doi.org/10.1002/2211-5463.12838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan B, Li Y, Zhao Q, Fan L, Wang D (2018) ZNF139 increases multidrug resistance in gastric cancer cells by inhibiting miR-185. Biosci Rep 38(5). https://doi.org/10.1042/bsr20181023

  82. Nie H, Mu J, Wang J, Li Y (2018) miR1955p regulates multidrug resistance of gastric cancer cells via targeting ZNF139. Oncol Rep 40(3):1370–1378. https://doi.org/10.3892/or.2018.6524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu F, Wu Q, Ni Z, Lei C, Li T, Shi Y (2018) miR-19a/b and MeCP2 repress reciprocally to regulate multidrug resistance in gastric cancer cells. Int J Mol Med 42(1):228–236. https://doi.org/10.3892/ijmm.2018.3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Poulin EJ, Coffey RJ (2013) LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br J Cancer 108(9):1765–1770. https://doi.org/10.1038/bjc.2013.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y, Zou X (2018) Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci 109(4):1044–1054. https://doi.org/10.1111/cas.13538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sun Z, Song X, Li X, Su T, Qi S, Qiao R, Wang F, Huan Y, Yang W, Wang J (2014) In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 6(23):14343–14353

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Qu X, Li C, Fan Y, Che X, Wang X, Cai Y, Hu X, Liu Y (2015) miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumor Biol 36(4):2277–2285

    Article  CAS  Google Scholar 

  88. Wang H, Peng R, Wang J, Qin Z, Xue L (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigeneti 10:59. https://doi.org/10.1186/s13148-018-0492-1

    Article  CAS  Google Scholar 

  89. Zhang J, Ren J, Hao S, Ma F, Xin Y, Jia W, Sun Y, Liu Z, Yu H, Jia J, Li W (2018) MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am J Transl Res 10(2):525–534

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang SK, Wang J, Li Y, Lin H, Li DD, Cui CJ, Wang GJ, Li XX, Yang L, Zhao M, Huang CZ (2018) Clinical application value of combined detection of serum miR-378 and miR-21 in gastric cancer. Zhonghua zhong liu za zhi [Chin J Oncol] 40(6):441–445. https://doi.org/10.3760/cma.j.issn.0253-3766.2018.06.008

    Article  CAS  Google Scholar 

  91. Wang J, Zhang H, Zhou X, Wang T, Zhang J, Zhu W, Zhu H, Cheng W (2018) Five serum-based miRNAs were identified as potential diagnostic biomarkers in gastric cardia adenocarcinoma. Cancer Biomark Sect A Dis Markers 23(2):193–203. https://doi.org/10.3233/cbm-181258

    Article  CAS  Google Scholar 

  92. Wang N, Wang L, Yang Y, Gong L, Xiao B, Liu X (2017) A serum exosomal microRNA panel as a potential biomarker test for gastric cancer. Biochem Biophys Res Commun 493(3):1322–1328. https://doi.org/10.1016/j.bbrc.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  93. Jiao Y, Yang H, Qian J, Gong Y, Liu H, Wu S, Cao L, Tang L (2019) miR36645P suppresses the proliferation and metastasis of gastric cancer by attenuating the NFkappaB signaling pathway through targeting MTDH. Int J Oncol 54(3):845–858. https://doi.org/10.3892/ijo.2019.4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lario S, Brunet-Vega A, Quilez ME, Ramirez-Lazaro MJ, Lozano JJ, Garcia-Martinez L, Pericay C, Miquel M, Junquera F, Campo R, Calvet X (2018) Expression profile of circulating microRNAs in the Correa pathway of progression to gastric cancer. United Eur Gastroenterol J 6(5):691–701. https://doi.org/10.1177/2050640618759433

    Article  CAS  Google Scholar 

  95. Gong Y, Yang G, Wang Q, Wang Y, Zhang X (2020) NME2 is a master suppressor of apoptosis in gastric cancer cells via transcriptional regulation of miR-100 and other survival factors. Mol Cancer Res MCR 18(2):287–299. https://doi.org/10.1158/1541-7786.mcr-19-0612

    Article  CAS  PubMed  Google Scholar 

  96. Li C, Zou J, Zheng G, Chu J (2016) MiR-30a decreases multidrug resistance (MDR) of gastric cancer cells. Med Sci Monit Int Med J Exp Clin Res 22:4509–4515. https://doi.org/10.12659/MSM.898415

    Article  CAS  Google Scholar 

  97. Cha Y, He Y, Ouyang K, Xiong H, Li J, Yuan X (2018) MicroRNA-140-5p suppresses cell proliferation and invasion in gastric cancer by targeting WNT1 in the WNT/beta-catenin signaling pathway. Oncol Lett 16(5):6369–6376. https://doi.org/10.3892/ol.2018.9480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghasabi M, Majidi J, Mansoori B, Mohammadi A, Shomali N, Shirafkan N, Baghbani E, Kazemi T, Baradaran B (2019) The effect of combined miR-200c replacement and cisplatin on apoptosis induction and inhibition of gastric cancer cell line migration. J Cell Physiol. https://doi.org/10.1002/jcp.28823

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SA conducted the literature search and did writing. RS and BB conceptualized the ideas and contributed to writing and preparing the final version of the manuscript. AB and MBK prepared the figures and tables and contributed to writing. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Reza Safaralizadeh or Behzad Baradaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarbarzin, S., Safaralizadeh, R., Khojasteh, M.B. et al. Current perspectives on the dysregulated microRNAs in gastric cancer. Mol Biol Rep 47, 7253–7264 (2020). https://doi.org/10.1007/s11033-020-05720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05720-z

Keywords

Navigation