Skip to main content
Log in

Ribosomal protein S3 selectively affects colon cancer growth by modulating the levels of p53 and lactate dehydrogenase

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ribosomal protein S3 (RPS3) is a component of the 40S ribosomal subunit. It is known to function in ribosome biogenesis and as an endonuclease. RPS3 has been shown to be over expressed in colon adenocarcinoma but its role in colon cancer is still unknown. In this study, we aim at determining the expression levels of RPS3 in a colon cancer cell line Caco-2 compared to a normal colon mucosa cell line NCM-460 and study the effects of targeting this protein by siRNA on cellular behavior. RPS3 was found to be expressed in both cell lines. However, siRNA treatment showed a more protruding effect on Caco-2 cells compared to NCM-460 cells. RPS3 knockdown led to a significant decrease in the proliferation, survival, migration and invasion and an increase in the apoptosis of Caco-2 cells. Western blot analysis demonstrated that these effects correlated with an increase in the level of the tumor suppressor p53 and a decrease in the level and activity of lactate dehydrogenase (LDH), an enzyme involved in the metabolism of cancer cells. No significant effect was shown in normal colon NCM-460 cells. Targeting p53 by siRNA did not affect RPS3 levels indicating that p53 may be a downstream target of RPS3. However, the concurrent knockdown of RPS3 and p53 showed no change in LDH level in Caco-2 cells suggesting an interesting interplay among the three proteins. These findings might present RPS3 as a selective molecular marker in colon cancer and an attractive target for colon cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65(15):2334–2359. https://doi.org/10.1007/s00018-008-8027-0

    Article  CAS  PubMed  Google Scholar 

  2. Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R, Linn S (1995) Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem 270(23):13620–13629

    Article  CAS  PubMed  Google Scholar 

  3. Zhou X, Liao WJ, Liao JM, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7(2):92–104. https://doi.org/10.1093/jmcb/mjv014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA (2009) Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair 8(10):1215–1224. https://doi.org/10.1016/j.dnarep.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim HD, Kim TS, Kim J (2011) Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene 30(30):3317–3327. https://doi.org/10.1038/onc.2011.47

    Article  CAS  PubMed  Google Scholar 

  6. Pogue-Geile K, Geiser JR, Shu M, Miller C, Wool IG, Meisler AI, Pipas JM (1991) Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol Cell Biol 11(8):3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyle P, Ferlay J (2005) Mortality and survival in breast and colorectal cancer. Nat Clin Pract Oncol 2(9):424–425. https://doi.org/10.1038/ncponc0288

    Article  PubMed  Google Scholar 

  8. International Agency for Research on Cancer Washington (2002) World Health Organization cancer incidence in five continents. The World Health Organization and the International Agency for Research on Cancer, Lyon

  9. World Cancer Research Fund (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. American Institute for Cancer Research, Washington

  10. De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P, Delrio P (2015) Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep 34(3):1087–1096. https://doi.org/10.3892/or.2015.4108

    Article  CAS  PubMed  Google Scholar 

  11. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H (2018) How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat 38:1–11. https://doi.org/10.1016/j.drup.2018.03.001

    Article  PubMed  Google Scholar 

  13. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707. https://doi.org/10.1016/j.cell.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  14. Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, Dang CV, Gillies RJ, Maitra A (2015) Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res 75(16):3355–3364. https://doi.org/10.1158/0008-5472.CAN-15-0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allison SJ, Knight JR, Granchi C, Rani R, Minutolo F, Milner J, Phillips RM (2014) Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis 3:e102. https://doi.org/10.1038/oncsis.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishiguro T, Nakajima M, Naito M, Muto T, Tsuruo T (1996) Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 56(4):875–879

    CAS  PubMed  Google Scholar 

  17. Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Shichita M, Yamamoto N, Yamamoto M (2000) Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 20(4):2489–2494

    CAS  PubMed  Google Scholar 

  18. Tian Y, Qin L, Qiu H, Shi D, Sun R, Li W, Liu T, Wang J, Xu T, Guo W, Kang T, Huang W, Wang G, Deng W (2015) RPS3 regulates melanoma cell growth and apoptosis by targeting Cyto C/Ca2+/MICU1 dependent mitochondrial signaling. Oncotarget 6(30):29614–29625. https://doi.org/10.18632/oncotarget.4868

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hua W, Yue L, Dingbo S (2016) Over-expression of RPS3 promotes acute lymphoblastic leukemia growth and progress by down-regulating COX-2 through NF-κb pathway. Blood 128(22):3927

    Article  Google Scholar 

  20. Zhao L, Cao J, Hu K, Wang P, Li G, He X, Tong T, Han L (2018) RNA-binding protein RPS3 contributes to hepatocarcinogenesis by post-transcriptionally up-regulating SIRT1. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1209

    Article  PubMed  PubMed Central  Google Scholar 

  21. Naora H, Takai I, Adachi M, Naora H (1998) Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J Cell Biol 141(3):741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim W, Youn H, Lee S, Kim E, Kim D, Sub Lee J, Lee JM, Youn B (2018) RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med 50(1):e434. https://doi.org/10.1038/emm.2017.247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagao-Kitamoto H, Setoguchi T, Kitamoto S, Nakamura S, Tsuru A, Nagata M, Nagano S, Ishidou Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S (2015) Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Lett 356:855–861. https://doi.org/10.1016/j.canlet.2014.10.042

    Article  CAS  PubMed  Google Scholar 

  24. Kim SH, Kim J (2006) Reduction of invasion in human fibrosarcoma cells by ribosomal protein S3 in conjunction with Nm23-H1 and ERK. Biochim Biophys Acta 1763(8):823–832. https://doi.org/10.1016/j.bbamcr.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  25. Momand J, Wu HH, Dasgupta G (2000) MDM2—master regulator of the p53 tumor suppressor protein. Gene 242(1–2):15–29

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103(4):976–981. https://doi.org/10.1073/pnas.0510146103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, Lamont JT (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129(6):1875–1888. https://doi.org/10.1053/j.gastro.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700. https://doi.org/10.1038/nrc2715

    Article  CAS  PubMed  Google Scholar 

  29. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE (2018) p53 and metabolism: from mechanism to therapeutics. Oncotarget 9(34):23780–23823. https://doi.org/10.18632/oncotarget.25267

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434. https://doi.org/10.1016/j.ccr.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  31. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042. https://doi.org/10.1073/pnas.0914433107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miao P, Sheng S, Sun X, Liu J, Huang G (2013) Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 65(11):904–910. https://doi.org/10.1002/iub.1216

    Article  CAS  PubMed  Google Scholar 

  33. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol cancer 9:33. https://doi.org/10.1186/1476-4598-9-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohammad GH, Olde Damink SW, Malago M, Dhar DK, Pereira SP (2016) Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS ONE 11(3):e0151635. https://doi.org/10.1371/journal.pone.0151635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Zhu S, Tong J, Hao H, Yang J, Liu Z, Wang Y (2016) Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. NeuroReport 27(2):110–115. https://doi.org/10.1097/WNR.0000000000000506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Wang H, Liu A, Fang C, Hao J, Wang Z (2015) Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 6(23):19456–19468. https://doi.org/10.18632/oncotarget.3318

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lebanese National Council for Scientific Research (Grant # CNRS020614). We would also like to acknowledge Dr. Samer Bazzi for performing the flow cytometry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeina Nasr.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, E., Maaliki, L. & Nasr, Z. Ribosomal protein S3 selectively affects colon cancer growth by modulating the levels of p53 and lactate dehydrogenase. Mol Biol Rep 47, 6083–6090 (2020). https://doi.org/10.1007/s11033-020-05683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05683-1

Keywords

Navigation