Skip to main content
Log in

The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) has a pivotal role in promoting chemoresistance by regulation of antioxidants and detoxification enzymes. Trigonelline is one of the major alkaloids in raw coffee which has been recently introduced as potent inhibitor of Nrf2. This study investigated the role of trigonelline and trigonelline loaded micelles in Nrf2 inhibition to break down oxaliplatin resistance in colon cancer cells. The PCL-PEG-PCL and PLA-PCL-PEG-PCL-PLA copolymers and trigonelline loaded micelles were prepared and characterized for fourier transforms infrared (FTIR), hydrogen nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR) spectroscopy, particle size, zeta potential, scanning electron microscopy (SEM) and entrapment efficiency. Cell viability and apoptosis were evaluated by using MTT and flow cytometry assays, respectively. Nrf2, MRP1, NQO1, HO-1, Bax, and Bcl2 gene expressions were examined by qRT-PCR. Our results revealed that micelles had spherical shapes with narrow sizes and zeta potential indexes of − 9.06 ± 6.94 mV for trigonelline loaded 3Block and − 7.47 ± 6.08 mV for trigonelline loaded 5Block micelles. After Nrf2 inhibition by trigonelline, antioxidant response element (ARE) related gene expressions were decreased (p < 0.05) with a significantly higher impact by trigonelline loaded micelles (p < 0.05). Trigonelline loaded micelles also strongly decreased IC50 value of oxaliplatin in resistant colon cancer cells (p < 0.05). Furthermore, trigonelline loaded 5Block micelle increased oxaliplatin-induced apoptosis in a Nrf2/ARE dependent manner. Altogether, the current study suggests that delivery of trigonelline loaded micelles as potent Nrf2 inhibitors can be considered as a promising strategy to overcome oxaliplatin resistance in colon cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li L, Shang J, Zhang Y, Liu S, Peng Y, Zhou Z, Pan H, Wang X, Chen L, Zhao Q (2017) MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis. Oncol Rep 38(3):1383–1392. https://doi.org/10.3892/or.2017.5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218. https://doi.org/10.1016/j.tibs.2014.02.002

    Article  CAS  Google Scholar 

  3. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7(3–4):385–394. https://doi.org/10.1089/ars.2005.7.385

    Article  CAS  PubMed  Google Scholar 

  4. Wang XJ, Li Y, Luo L, Wang H, Chi Z, Xin A, Li X, Wu J, Tang X (2014) Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radical Biol Med 70:68–77. https://doi.org/10.1016/j.freeradbiomed.2014.02.010

    Article  CAS  Google Scholar 

  5. Joshi JG, Handler P (1960) Biosynthesis of trigonelline. J biol Chem 235:2981–2983

    CAS  PubMed  Google Scholar 

  6. Liao JC, Lee KT, You BJ, Lee CL, Chang WT, Wu YC, Lee H-Z (2015) Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr Res 59(1):29884. https://doi.org/10.3402/fnr.v59.29884

    Article  CAS  PubMed  Google Scholar 

  7. Hirakawa N, Okauchi R, Miura Y, Yagasaki K (2005) Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem 69(3):653–658. https://doi.org/10.1271/bbb.69.653

    Article  CAS  PubMed  Google Scholar 

  8. Bakuradze T, Lang R, Hofmann T, Stiebitz H, Bytof G, Lantz I, Baum M, Eisenbrand G, Janzowski C (2010) Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr Food Res 54(12):1734–1743. https://doi.org/10.1002/mnfr.201000147

    Article  CAS  PubMed  Google Scholar 

  9. Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M, Schreiber S, Schäfer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825. https://doi.org/10.1038/onc.2012.493

    Article  CAS  PubMed  Google Scholar 

  10. Jeong Y-I, Kim DH, Chung KD, Kim YH, Lee YS, Choi K-C (2014) Antitumor activity of trigonelline-incorporated chitosan nanoparticles. J Nanosci Nanotechnol 14(8):5633–5637. https://doi.org/10.1166/jnn.2014.8818

    Article  CAS  PubMed  Google Scholar 

  11. Roh J-L, Jang H, Kim EH, Shin D (2017) Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid Redox Signal 27(2):106–114. https://doi.org/10.1089/ars.2016.6841

    Article  CAS  PubMed  Google Scholar 

  12. Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22(5):426–440. https://doi.org/10.1016/j.jnutbio.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Yan L, Li X (2016) Biodegradable stimuli-responsive polymeric micelles for treatment of malignancy. Curr Pharm Biotechnol 17(3):227–236. https://doi.org/10.2174/138920101703160206142821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang R, Smith JD, Allen BN, Kramer JS, Schauflinger M, Ulery BD (2018) Peptide amphiphile micelle vaccine size and charge influence the host antibody response. ACS Biomater Sci Eng 4(7):2463–2472. https://doi.org/10.1021/acsbiomaterials.8b00511

    Article  CAS  Google Scholar 

  15. Uchida S, Kataoka K (2019) Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J Biomed Mater Res Part A 107(5):978–990. https://doi.org/10.1002/jbm.a.36614

    Article  CAS  Google Scholar 

  16. Zhang Y, Huang Y, Li S (2014) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech 15(4):862–871. https://doi.org/10.1208/s12249-014-0113-z

    Article  CAS  Google Scholar 

  17. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48. https://doi.org/10.1016/S0169-409X(00)00124-1

    Article  Google Scholar 

  18. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Jelvehgari M (2018) Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci 21(2):153. https://doi.org/10.22038/ijbms.2017.26590.6513

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma G, Miao B, Song C (2010) Thermosensitive PCL-PEG-PCL hydrogels: synthesis, characterization, and delivery of proteins. J Appl Polym Sci 116(4):1985–1993. https://doi.org/10.1002/app.31654

    Article  CAS  Google Scholar 

  20. Tazehkand AP, Akbarzadeh M, Velaie K, Sadeghi MR, Samadi N (2018) The role of Her2-Nrf2 axis in induction of oxaliplatin resistance in colon cancer cells. Biomed Pharmacother 103:755–766. https://doi.org/10.1016/j.biopha.2018.04.105

    Article  CAS  Google Scholar 

  21. Lin J, Chen H, Ji Y, Zhang Y (2012) Functionally modified monodisperse core–shell silica nanoparticles: silane coupling agent as capping and size tuning agent. Colloids Surf A 411:111–121. https://doi.org/10.1016/j.colsurfa.2012.06.047

    Article  CAS  Google Scholar 

  22. Salehi R, Hamishehkar H, Eskandani M, Mahkam M, Davaran S (2014) Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J Drug Target 22(4):327–342. https://doi.org/10.3109/1061186X.2013.876645

    Article  CAS  PubMed  Google Scholar 

  23. Tamboli V, Mishra GP, Mitra AK (2013) Novel pentablock copolymer (PLA–PCL–PEG–PCL–PLA)-based nanoparticles for controlled drug delivery: effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym Sci 291(5):1235–1245. https://doi.org/10.1007/s00396-012-2854-0

    Article  CAS  PubMed  Google Scholar 

  24. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Salatin S, Naderinia A, Jelvehgari M (2017) Novel pentablock copolymers as thermosensitive self-assembling micelles for ocular drug delivery. Adv Pharm Bull 7(1):11. https://doi.org/10.15171/apb.2017.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge H, Hu Y, Yang S, Jiang X, Yang C (2000) Preparation, characterization, and drug release behaviors of drug-loaded ε-caprolactone/L-lactide copolymer nanoparticles. J Appl Polym Sci 75(7):874–882. https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7%3c874:AID-APP3%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  26. Mishra GP, Tamboli V, Mitra AK (2011) Effect of hydrophobic and hydrophilic additives on sol–gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel. Colloid Polym Sci 289(14):1553. https://doi.org/10.1007/s00396-011-2476-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J-S, Surh Y-J (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184. https://doi.org/10.1016/j.canlet.2004.09.042

    Article  CAS  PubMed  Google Scholar 

  28. Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Samadi N (2017) The role of Nrf2-Keap1 axis in colorectal cancer, progression, and chemoresistance. Tumor Biol 39(6):1–10. https://doi.org/10.1177/1010428317705510

    Article  CAS  Google Scholar 

  29. Chian S, Li Y-Y, Wang X-J, Tang X-W (2014) Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prevent 15(6):2911–2916. https://doi.org/10.7314/APJCP.2014.15.6.2911

    Article  Google Scholar 

  30. Ryoo I-g, Kim G, Choi B-h, Lee S-h, Kwak M-K (2016) Involvement of NRF2 signaling in doxorubicin resistance of cancer stem cell-enriched colonospheres. Biomol Ther 24(5):482. https://doi.org/10.4062/biomolther.2016.145

    Article  CAS  Google Scholar 

  31. Kang K, Piao M, Kim K, Kang H, Chang W, Park I, Keum Y, Surh Y, Hyun J (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis 5(4):e1183. https://doi.org/10.1038/cddis.2014.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, Kou HH, Zhai C, Nelson MB, Zhang Q (2016) An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radical Biol Med 99:544–556. https://doi.org/10.1016/j.freeradbiomed.2016.09.010

    Article  CAS  Google Scholar 

  33. Garg SM, Vakili MR, Lavasanifar A (2015) Polymeric micelles based on poly (ethylene oxide) and α-carbon substituted poly (ɛ-caprolactone): an in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity. Colloids Surf B 132:161–170. https://doi.org/10.1016/j.colsurfb.2015.05.015

    Article  CAS  Google Scholar 

  34. Wang L, Zhang J, Song M, Tian B, Li K, Liang Y, Han J, Wu Z (2017) A shell-crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity. Colloids Surf B 152:1–11. https://doi.org/10.1016/j.colsurfb.2016.12.032

    Article  CAS  Google Scholar 

  35. Roh J-L, Kim EH, Jang H, Shin D (2017) Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–262. https://doi.org/10.1016/j.redox.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  36. Abd-Rabou AA, Zoheir KM, Kishta MS, Shalby AB, Ezzo MI (2016) Nano-micelle of Moringa oleifera seed oil triggers mitochondrial cancer cell apoptosis. Asian Pac J Cancer Prevent 17(11):4929. https://doi.org/10.22034/APJCP.2016.17.11.4929

    Article  Google Scholar 

  37. Cao A, Ma P, Yang T, Lan Y, Yu S, Liu L, Sun Y, Liu Y (2019) Multi-functionalized micelles facilitate intracellular doxorubicin delivery for reversing multidrug resistance of breast cancer. Mol Pharm 16(6):2502–2510. https://doi.org/10.1021/acs.molpharmaceut.9b00094

    Article  CAS  PubMed  Google Scholar 

  38. Vaidya FU, Sharma R, Shaikh S, Ray D, Aswal VK, Pathak C (2019) Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits pro-inflammatory cytokines in human breast adenocarcinoma cells. Cancer Rep 2(1):e1133. https://doi.org/10.1002/cnr2.1133

    Article  CAS  Google Scholar 

  39. Li X, Chen T, Xu L, Zhang Z, Li L, Chen H (2014) Preparation of curcumin micelles and the in vitro and in vivo evaluation for cancer therapy. J Biomed Nanotechnol 10(8):1458–1468. https://doi.org/10.1166/jbn.2014.1840

    Article  CAS  PubMed  Google Scholar 

  40. Hu M, Zhu J, Qiu L (2014) Polymer micelle-based combination therapy of paclitaxel and resveratrol with enhanced and selective antitumor activity. RSC Adv 4(109):64151–64161. https://doi.org/10.1039/C4RA09761K

    Article  CAS  Google Scholar 

  41. Jia L, Jia N, Gao Y, Hu H, Zhao X, Chen D, Qiao M (2019) Multi-modulation of doxorubicin resistance in breast cancer cells by poly (l-histidine)-based multifunctional micelles. Pharmaceutics 11(8):385. https://doi.org/10.3390/pharmaceutics11080385

    Article  CAS  PubMed Central  Google Scholar 

  42. Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, Wang TT, Lin MT, Zhang ZT, Lu YY, Yang QY, Han M, Xu DH, Gao JQ (2019) Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 45(9):1556–1564. https://doi.org/10.1080/03639045.2019.1640721

    Article  CAS  PubMed  Google Scholar 

  43. Xiao X, Zou J, Fang Y, Meng Y, Xiao C, Fu J, Liu S, Bai P (2018) Fisetin and polymeric micelles encapsulating fisetin exhibit potent cytotoxic effects towards ovarian cancer cells. BMC Complement Altern Med 18(1):91. https://doi.org/10.1186/s12906-018-2127-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou W, Sarisozen C, Torchilin VP (2017) The reversal of multidrug resistance in ovarian carcinoma cells by co-application of tariquidar and paclitaxel in transferrin-targeted polymeric micelles. J Drug Target 25(3):225–234. https://doi.org/10.1080/1061186X.2016.1236113

    Article  CAS  PubMed  Google Scholar 

  45. Frank A, Rath SK, Venkatraman SS (2005) Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release 102(2):333–344. https://doi.org/10.1016/j.jconrel.2004.10.019

    Article  CAS  PubMed  Google Scholar 

  46. Huang MH, Li S, Hutmacher DW, Schantz JT, Vacanti CA, Braud C, Vert M (2004) Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ϵ-caprolactone in the presence of poly (ethylene glycol). J Biomed Mater Res 69(3):417–427. https://doi.org/10.1002/jbm.a.30008

    Article  CAS  Google Scholar 

  47. Jia WJ, Gu YC, Gou ML, Dai M, Li XY, Kan B, Yang JL, Song QF, Wei YQ, Qian ZY (2008) Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Delivery 15(7):409–416. https://doi.org/10.1080/10717540802321727

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Dobrzynski P, Kasperczyk J, Bero M, Braud C, Vert M (2005) Structure–property relationships of copolymers obtained by ring-opening polymerization of glycolide and ε-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation. Biomacromol 6(1):489–497. https://doi.org/10.1021/bm049458+

    Article  CAS  Google Scholar 

  49. Lan Y, Sun Y, Yang T, Ma X, Cao M, Liu L, Yu S, Cao A, Liu Y (2019) Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Mol Pharm 16(8):3430–3440. https://doi.org/10.1021/acs.molpharmaceut.9b00209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran for financial support [95/126].

Funding

This work financially was supported by Drug Applied Research Center, Tabriz University of Medical Sciences, and Tabriz, Iran [95/126].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Pirpour Tazehkand or Nasser Samadi.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5650_MOESM1_ESM.pdf

Supplementary material 1 (PDF 168 kb) Online Resource 1. Ring opening polymerization of PCL-PEG-PCL and PLA-PCL-PEG-PCL-PLA co polymers and micelles preparation.

11033_2020_5650_MOESM2_ESM.pdf

Supplementary material 2 (PDF 247 kb) Online Resource 2. 1HNMR spectrum of PCL-PEG-PCL (3Block) and PLA-PCL-PEG-PCL-PLA (5Block) copolymers.

11033_2020_5650_MOESM3_ESM.pdf

Supplementary material 3 (PDF 197 kb) Online Resource 3. 13CNMR spectrum of PCL-PEG-PCL (3Block) and PLA-PCL-PEG-PCL-PLA (5Block) copolymers.

11033_2020_5650_MOESM4_ESM.pdf

Supplementary material 4 (PDF 220 kb) Online Resource 4. FTIR Spectra of PCL-PEG-PCL (3Block) and PLA-PCL-PEG-PCL-PLA (5Block) copolymers (A), trigonelline (Trig) loaded 3Block and trigonelline loaded 5Block micelles (B).

11033_2020_5650_MOESM5_ESM.pdf

Supplementary material 5 (PDF 156 kb) Online Resource 5. The combination index of oxaliplatin, trigonelline, trigonelline loaded 3Block and trigonelline loaded 5Block micelles in SW480 resistant colon cancer cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirpour Tazehkand, A., Salehi, R., Velaei, K. et al. The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells. Mol Biol Rep 47, 5817–5829 (2020). https://doi.org/10.1007/s11033-020-05650-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05650-w

Keywords

Navigation