Skip to main content

Advertisement

Log in

Combination Nanopreparations of a Novel Proapoptotic Drug – NCL-240, TRAIL and siRNA

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a multifunctional nanoparticle system carrying a combination of pro-apoptotic drug, NCL-240, TRAIL [tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand] and anti-survivin siRNA and to test the combination preparation for anti-cancer effects in different cancer cells.

Methods

Polyethylene glycol-phosphoethanolamine (PEG-PE) – based polymeric micelles were prepared carrying NCL-240. These micelles were used in combination with TRAIL-conjugated micelles and anti-survivin siRNA-S-S-PE containing micelles. All the micelles were characterized for size, zeta potential, and drug encapsulation efficiency. Different cancer cells were used to study the cytotoxicity potential of the individual as well as the combination formulations. Other cell based assays included cellular association studies of transferrin-targeted NCL-240 micelles and study of cellular survivin protein downregulation by anti-survivin siRNA-S-S-PE containing micelles.

Results

NCL-240 micelles and the combination NCL-240/TRAIL micelles significantly increased cytotoxicity in the resistant strains of SKOV-3, MCF-7 and A549 as compared to free drugs or single drug formulations. The NCL-240/TRAIL micelles were also more effective in NCI/ADR-RES cancer cell spheroids. Anti-survivin siRNA micelles alone displayed a dose-dependent reduction in survivin protein levels in A2780 cells. Treatment with NCL-240/TRAIL after pre-incubation with anti-survivin siRNA inhibited cancer cell proliferation. Additionally, a single multifunctional system composed of NCL-240/TRAIL/siRNA PM also had significant cytotoxic effects in vitro in multiple cell lines.

Conclusion

These results demonstrate the efficacy of a combination of small-molecule PI3K inhibitors, TRAIL, and siRNA delivered by micellar preparations in multiple cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c-FLIP:

Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein

EPR:

Enhanced permeability and retention

IAP:

Inhibitor of apoptosis

MDR:

Multi-drug resistant

mNCL-240:

NCL-240 – loaded polymeric micelles

mNCL-240/TRAIL:

NCL-240 – loaded, TRAIL-conjugated polymeric micelles

mSurvivin:

Anti-survivin siRNA-S-S-PE mixed micelles

mTf:

Transferrin – targeted polymeric micelles

PDK1:

3-phosphoinositide-dependent kinase-1

PE:

Phosphatidylethanolamine

PEG:

Polyethylene glycol

PH:

Pleckstrin-homology

PI3K:

Phosphoinositide 3-kinase

PIP2 :

Phosphatidylinositol-3,4-diphosphate

PIP3 :

Phosphatidylinositol-3,4,5-triphosphate

PKB/Akt:

Protein kinase B

PM:

Polymeric micelles

pNP:

p-nitrophenylcarbonyl

PTEN:

Phosphatase and tensin homologous protein

siRNA:

Small interfering RNA

siRNA-S-S-PE PM:

siRNA-S-S-PE – containing mixed micelles

Tf:

Transferrin

TRAIL:

Tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand

References

  1. Riehle RD, Cornea S, Degterev A. Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. Adv Exp Med Biol. 2013;991:105–39.

    Article  CAS  PubMed  Google Scholar 

  2. Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999;9(4):125–8.

    Article  CAS  PubMed  Google Scholar 

  3. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  CAS  PubMed  Google Scholar 

  4. Workman P, Clarke PA, Raynaud FI, van Montfort RL. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res. 2010;70(6):2146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hixon ML, Paccagnella L, Millham R, Perez-Olle R, Gualberto A. Development of inhibitors of the IGF-IR/PI3K/Akt/mTOR pathway. Rev Recent Clin Trials. 2010;5(3):189–208.

    Article  CAS  PubMed  Google Scholar 

  6. McNamara CR, Degterev A. Small-molecule inhibitors of the PI3K signaling network. Future Med Chem. 2011;3(5):549–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A. 2010;107(46):20126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skidan I, Miao B, Thekkedath RV, Dholakia P, Degterev A, Torchilin V. In vitro cytotoxicity of novel pro-apoptotic agent DM-PIT-1 in PEG-PE-based micelles alone and in combination with TRAIL. Drug Deliv. 2009;16(1):45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riehle RD, Cornea S, Degterev A, Torchilin V. Micellar formulations of pro-apoptotic DM-PIT-1 analogs and TRAIL in vitro and in vivo. Drug Deliv. 2013;20(2):78–85.

    Article  CAS  PubMed  Google Scholar 

  10. Torchilin VP. Lipid-core micelles for targeted drug delivery. Current Drug Deliv. 2005;2(4):319–27.

    Article  CAS  Google Scholar 

  11. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  12. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100(10):6039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 2001;1511(2):397–411.

    Article  CAS  PubMed  Google Scholar 

  14. Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65(13–14):1748–62.

    Article  CAS  PubMed  Google Scholar 

  15. Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin VP. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer. Cancer Lett. 2014;343(2):224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.

    Article  Google Scholar 

  17. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8(10):782–98.

    Article  CAS  PubMed  Google Scholar 

  18. Guseva NV, Rokhlin OW, Taghiyev AF, Cohen MB. Unique resistance of breast carcinoma cell line T47D to TRAIL but not anti-Fas is linked to p43cFLIP(L). Breast Cancer Res Treat. 2008;107(3):349–57.

    Article  CAS  PubMed  Google Scholar 

  19. Rodel F, Sprenger T, Kaina B, Liersch T, Rodel C, Fulda S, et al. Survivin as a prognostic/predictive marker and molecular target in cancer therapy. Curr Med Chem. 2012;19(22):3679–88.

    Article  CAS  PubMed  Google Scholar 

  20. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  21. Musacchio T, Vaze O, D’Souza G, Torchilin VP. Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug Chem. 2010;21(8):1530–6.

    Article  CAS  PubMed  Google Scholar 

  22. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.

    Article  CAS  PubMed  Google Scholar 

  23. Sawant RR, Jhaveri AM, Koshkaryev A, Zhu L, Qureshi F, Torchilin VP. Targeted transferrin-modified polymeric micelles: enhanced efficacy in vitro and in vivo in ovarian carcinoma. Mol Pharm. 2014;11(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  24. Trabulo S, Cardoso AM, Santos-Ferreira T, Cardoso AL, Simoes S. Pedroso de Lima MC. Survivin silencing as a promising strategy to enhance the sensitivity of cancer cells to chemotherapeutic agents. Mol Pharm. 2011;8(4):1120–31.

    Article  CAS  PubMed  Google Scholar 

  25. Perche F, Patel NR, Torchilin VP. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG-PE micelles in ovarian cancer cell spheroid model. J Contr Release: Off J Control Release Soc. 2012;164(1):95–102.

    Article  CAS  Google Scholar 

  26. Sawant RR, Torchilin VP. Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol. 2011;751:357–78.

    Article  CAS  PubMed  Google Scholar 

  27. Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol. 2010;27(7):232–46.

    Article  CAS  PubMed  Google Scholar 

  28. Reulen SW, Merkx M. Exchange kinetics of protein-functionalized micelles and liposomes studied by Forster resonance energy transfer. Bioconjug Chem. 2010;21(5):860–6.

    Article  CAS  PubMed  Google Scholar 

  29. Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP. Multifunctional polymeric micelles Co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol Cancer Ther. 2015;14(4):1075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calzolari A, Oliviero I, Deaglio S, Mariani G, Biffoni M, Sposi NM, et al. Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol Dis. 2007;39(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  31. Lamendola DE, Duan Z, Yusuf RZ, Seiden MV. Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res. 2003;63(9):2200–5.

    CAS  PubMed  Google Scholar 

  32. Patel NR, Rathi A, Mongayt D, Torchilin VP. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm. 2011;416(1):296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He C, Rong R, Liu J, Wan J, Zhou K, Kang JX. Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells. Chin Med. 2012;7(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donmez Y, Akhmetova L, Iseri OD, Kars MD, Gunduz U. Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer Chemother Pharmacol. 2011;67(4):823–8.

    Article  PubMed  Google Scholar 

  35. Kim K, Fisher MJ, Xu SQ. el-Deiry WS. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res: Off J Am Assoc Cancer Res. 2000;6(2):335–46.

    CAS  Google Scholar 

  36. Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer. 2005;5:54.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Steelman LS, McCubrey JA. Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget. 2011;2(8):610–26.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee SM, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG. Hypoxia confers protection against apoptosis via PI3K/Akt and ERK pathways in lung cancer cells. Cancer Lett. 2006;242(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  39. Foster H, Coley HM, Goumenou A, Pados G, Harvey A, Karteris E. Differential expression of mTOR signalling components in drug resistance in ovarian cancer. Anticancer Res. 2010;30(9):3529–34.

    CAS  PubMed  Google Scholar 

  40. Bao R, Connolly DC, Murphy M, Green J, Weinstein JK, Pisarcik DA, et al. Activation of cancer-specific gene expression by the survivin promoter. J Natl Cancer Inst. 2002;94(7):522–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

NIH/NCI grant U54CA151881 to V.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Torchilin.

Additional information

Robert Riehle and Bhushan Pattni contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

ESM 2

(JPG 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riehle, R., Pattni, B., Jhaveri, A. et al. Combination Nanopreparations of a Novel Proapoptotic Drug – NCL-240, TRAIL and siRNA. Pharm Res 33, 1587–1601 (2016). https://doi.org/10.1007/s11095-016-1899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1899-z

KEY WORDS

Navigation