Skip to main content

Advertisement

Log in

Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maldonado M, Nam J (2013) The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int 2013:284873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wuelling M, Vortkamp A (2011) Chondrocyte proliferation and differentiation. Endocr Dev 21:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Tsang KY, Cheah KS (2019) The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Curr Opin Cell Biol 61:132–140

    Article  CAS  PubMed  Google Scholar 

  5. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Akkiraju H, Nohe A (2015) Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 3:177–192

    Article  PubMed  CAS  Google Scholar 

  7. Hu DP, Ferro F, Yang F, Taylor AJ, Chang W, Miclau T, Marcucio RS, Bahney CS (2017) Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development 144:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinton RJ, Jing Y, Jing J, Feng JQ (2017) Roles of chondrocytes in endochondral bone formation and fracture repair. J Dent Res 96:23–30

    Article  CAS  PubMed  Google Scholar 

  9. Aghajanian P, Mohan S (2018) The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatr Nephrol 25:625–631

    Article  PubMed  Google Scholar 

  11. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soung do Y, Dong Y, Wang Y, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi H (2007) Runx3/AML2/Cbfa3 regulates early and late chondrocyte differentiation. J Bone Miner Res 22:1260–1270

    Article  CAS  PubMed  Google Scholar 

  13. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656

    Article  CAS  PubMed  Google Scholar 

  14. Spies D, Renz PF, Beyer TA, Ciaudo C (2019) Comparative analysis of differential gene expression tools for RNA sequencing time course data. Brief Bioinform 20:288–298

    Article  PubMed  CAS  Google Scholar 

  15. Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, Crish JF, Lefebvre V (2015) The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Res 43:5394–5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao B, Zhang M, Leng X, Liu M, Liu Y, Hu Y, Zhao D, Zhao Y (2018) Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties. In Vitro Cell Dev Biol Anim 54:439–448

    Article  CAS  PubMed  Google Scholar 

  17. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  18. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Dong S (2016) The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int 2016:2470351

    PubMed  PubMed Central  Google Scholar 

  22. Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yong H, Zhao W, Zhou X, Liu Z, Tang Q, Shi H, Cheng R, Zhang X, Qiu Z, Zhu J, Feng Z (2019) RNA-Binding Motif 4 (RBM4) Suppresses Tumor Growth and Metastasis in Human Gastric Cancer. Med Sci Monit 25:4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, Gao X, Liu W (2017) Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Cell Discov 3:17035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steinbusch MM, Caron MM, Eckmann F, Lausch E, van Rhijn LW, Zabel B, Welting TJ (2015) Viperin; a novel chondrogenic regulator. Osteoarthr Cartilage 23:A148–A149

    Article  Google Scholar 

  26. Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW, Kim SY, Ahsan F, Kim IS, Byun Y (2016) Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 126:1251–1266

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yee NS (2015) Roles of TRPM8 ion channels in cancer: proliferation, survival, and invasion. Cancers (Basel) 7:2134–2146

    Article  CAS  Google Scholar 

  28. Sukumaran P, Löf C, Pulli I, Kemppainen K, Viitanen T, Törnquist K (2013) Significance of the transient receptor potential canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol Cell Endocrinol 374:10–21

    Article  CAS  PubMed  Google Scholar 

  29. Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, Bloch KD (2000) Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20:6138–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Posey KL, Hecht JT (2008) The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr Drug Targets 9:869–877

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Cheng P, Hu W, Yin W, Guo F, Chen A, Huang H (2018) Downregulated microRNA-340-5p promotes proliferation and inhibits apoptosis of chondrocytes in osteoarthritis mice through inhibiting the extracellular signal-regulated kinase signaling pathway by negatively targeting the FMOD gene. J Cell Physiol 234:927–939

    Article  PubMed  CAS  Google Scholar 

  32. Chen Y, Cossman J, Jayasuriya CT, Li X, Guan Y, Fonseca V, Yang K, Charbonneau C, Yu H, Kanbe K, Ma P, Darling E, Chen Q (2016) Deficient Mechanical activation of anabolic transcripts and post-traumatic cartilage degeneration in matrilin-1 knockout mice. PLoS ONE 11:e0156676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323

    Article  CAS  PubMed  Google Scholar 

  34. Gasparini G, De Gori M, Paonessa F, Chiefari E, Brunetti A, Galasso O (2012) Functional relationship between high mobility group A1 (HMGA1) protein and insulin-like growth factor-binding protein 3 (IGFBP-3) in human chondrocytes. Arthritis Res Ther 14:R207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fransès RE, McWilliams DF, Mapp PI, Walsh DA (2010) Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthr Cartilage 18:563–571

    Article  Google Scholar 

  36. Guévremont M, Martel-Pelletier J, Boileau C, Liu FT, Richard M, Fernandes JC, Pelletier JP, Reboul P (2004) Galectin-3 surface expression on human adult chondrocytes: a potential substrate for collagenase-3. Ann Rheum Dis 63:636–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. White MJ, Roife D, Gomer RH (2015) Galectin-3 binding protein secreted by breast cancer cells inhibits monocyte-derived fibrocyte differentiation. J Immunol 195:1858–1867

    Article  CAS  PubMed  Google Scholar 

  38. Recklies AD, Ling H, White C, Bernier SM (2005) Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem 280:41213–41221

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Y, Tuan RS (2019) Role of NGF-TrkA signaling in calcification of articular chondrocytes. FASEB J 33:10231–10239

    Article  CAS  PubMed  Google Scholar 

  40. Iannone F, De Bari C, Dell'Accio F, Covelli M, Patella V, Lo Bianco G, Lapadula G (2002) Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology (Oxford) 41:1413–1418

    Article  CAS  Google Scholar 

  41. Rose BJ, Kooyman DL (2016) A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis Markers 2016:4895050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sahni M, Raz R, Coffin JD, Levy D, Basilico C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128:2119–2129

    Article  CAS  PubMed  Google Scholar 

  43. Millward-Sadler SJ, Khan NS, Bracher MG, Wright MO, Salter DM (2006) Roles for the interleukin-4 receptor and associated JAK/STAT proteins in human articular chondrocyte mechanotransduction. Osteoarthr Cartilage 14:991–1001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 81702136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojin Yao or Daqing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed in accordance with the guidelines of the Institutional Animal Ethics Committee of Changchun University of Chinese Medicine (No. ccucm-2017-0015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yao, B. & Zhao, D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 47, 5773–5792 (2020). https://doi.org/10.1007/s11033-020-05646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05646-6

Keywords

Navigation