Skip to main content
Log in

Molecular inferences about the genus Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae): a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This review compiles and discusses the use of genetic markers applied in the study of the fish genus Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae). The database comprises 51 peer-review articles that were published in the last 52 years (1968–2020) and that approach analysis based on different classes of genetic markers. The use of cytogenetic and enzymatic markers was predominantly especially in population studies with the genus Hypostomus, while mitochondrial markers were the majority in phylogenetic studies. Although significant methodological advances have occurred for molecular evaluation, they are still modestly applied to the study of neotropical fish genera, in which Hypostomus is included. New perspectives, especially on integrative approaches, are needed to improve our knowledge of the genetic functionality of fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken N, Smith S, Schwarz C, Morins PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431. https://doi.org/10.1111/j.1365-294X.2004.02159.x

    Article  CAS  PubMed  Google Scholar 

  2. Al-Samarai FR, Al-Kazaz AA (2015) Molecular markers: an introduction and applications. Eur J Mol Biotech 9:3. https://doi.org/10.1073/pnas.0811087106

    Article  Google Scholar 

  3. Albert JS, Crampton WGR (2010) The geography and ecology of diversification in Neotropical freshwaters. Nat Educat Knowl 1:3–19

    Google Scholar 

  4. Albert JS, Reis RE (2011) Historical Biogeography of Neotropical Freshwater Fishes. University of California Press, Berkeley, Los Angeles, London

    Book  Google Scholar 

  5. Alfaro ME, Santini F, Brock C (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Pro Natl Acad Sci USA 106:13410–13414. https://doi.org/10.1073/pnas.0811087106

    Article  Google Scholar 

  6. Ali BA, Huang T-H, Qin Da-N, Wang X-M (2004) A review of random amplified polymorphic DNA (RAPD) markers in fish research. Rev Fish Biol Fish 14:443–453.

  7. Alves AL, Borba RS, Oliveira C, Nirchio M, Granado A, Foresti F (2012) Karyotypic diversity and evolutionary trends in the Neotropical catfish genus Hypostomus Lacépède, 1803 (Teleostei, Siluriformes, Loricariidae). Comparat Cytogenet 6:443–452. https://doi.org/10.3897/CompCytogen.v6i4.4028

    Article  Google Scholar 

  8. Alves AL, Oliveira C, Nirchio M, Granado A, Foresti F (2006) Karyotypic relationships among the tribes of Hypostominae (Siluriformes: Loricariidae) with description of X.O. sex chromosome system in a Neotropical fish species. Genetica 128:1–9. https://doi.org/10.1007/s10709-005-0715-1

    Article  PubMed  Google Scholar 

  9. Anjos MS, Bitencourt JÁ, Nunes LA, Sarmento-Soares LM, Carvalho DC, Armbruster JW, Affonso PRAM (2020) Species delimitation based on integrative approach suggests reallocation of genus in Hypostomini catfish (Siluriformes, Loricariidae). Hydrobiologia 847:563–578. https://doi.org/10.1007/s10750-019-04121-z

    Article  CAS  Google Scholar 

  10. Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Armbruster JW (2004) Phylogenetic relationships of the suckermouth armored catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zool J Linnean Soc 141:1–80. https://doi.org/10.1111/j.1096-3642.2004.00109.x

    Article  Google Scholar 

  12. Armbruster JW, Page LM (2006) Redescription of Pterygoplichthys punctatus and description of a new species of Pterygoplichthys (Siluriformes: Loricariidae). Neotrop Ichthyol 4:401–409. https://doi.org/10.1590/S1679-62252006000400003

    Article  Google Scholar 

  13. Armbruster JW, Souza LS (2005) Hypostomus macushi, a new species of the Hypostomus cochliodon group (Siluriformes: Loricariidae) from Guyana. Zootaxa 920:1–12.

  14. Artoni RF, Bertollo LAC (1996) Cytogenetic studies on Hypostominae (Pisces, Siluriformes, Loricariidae). Considerations on karyotype evolution in the genus Hypostomus. Caryologia 49:81–90. https://doi.org/10.1080/00087114.1996.10797353

    Article  Google Scholar 

  15. Artoni RF, Venere PC, Bertollo LAC (1998) A heteromorphic ZZ/ZW sex chromosome system in fish, genus Hypostomus (Loricariidae). Cytologia 63:421–425

    Article  Google Scholar 

  16. Batista JS, Farias IP, Formiga-Aquino K, Sousa ACB (2009) DNA microsatellite markers for “dourado” (Brachyplatys tomarousseauxii, Siluriformes: Pimelodidae), a migratory catfish of utmost importance for fisheries in the Amazon: development, characterization and inter-specific amplification. Conserv Genet Res 2:5–10

    Article  Google Scholar 

  17. Baumgartner L, Paiz LM, Zawadzki CH, Margarido VP, Castro ALBP (2014) Heterochromatin polymorphism and physical mapping of 5s and 18s ribosomal dna in four populations of Hypostomus strigaticeps (Regan, 1907) from the Paraná River Basin, Brazil: evolutionary and environmental correlation. Zebrafish 11:1–9. https://doi.org/10.1155/2014/943825

    Article  Google Scholar 

  18. Becker QMC, Castro RJ, Silva AM, Vizzotto PC (2014) Cytogenetic characterization of two species of Hypostomus (Siluriformes, Loricariidae) from tributaries of the Vermelho River, upper Paraguay River basin. Biodiversidade 13:1–10

    Google Scholar 

  19. Bertollo LAC, Cavalaro ZI (1992) A highly differentiated ZZ/ZW sex chromosome system in a Characidae fish, Triportheus guentheri. Cytogenet Cell Genet 60:60–63

    Article  CAS  PubMed  Google Scholar 

  20. Bertuzzo E, Muneepeerakul R, Lynch HJ, Fagan WF, Rodriguez-Iturbe I, Rinaldo A (2009) On the geographic range of freshwater fish in river basin. Water Resour Res 45:1–11. https://doi.org/10.1029/2009WR007997

    Article  Google Scholar 

  21. Bitencourt JA, Affonso PRAM, Giuliano-Caetano L, Carneiro PLS, Dias AL (2012) Population divergence and peculiar karyoevolutionary trends in the loricariid fish Hypostomus aff. unae from northeastern Brazil. Genet Mol Res 11:933–943. https://doi.org/10.4238/2012.April.13.1

    Article  CAS  PubMed  Google Scholar 

  22. Borba RS, Garcia MS, Kovalleski A, Oliveira AC, Zimmer PD, Branco JSC, Malone G (2005) Genetic dissimilarity of Trichogramma westwood (Hymenoptera: Trichogrammatidae) lineages trough ISSR genetic markers. Neotrop Entomol 34:565–569. https://doi.org/10.1590/S1519-566X2005000400005

    Article  Google Scholar 

  23. Borba RS, Zawadzki CH, Oliveira C, Perdices A, Parise-Maltempi PP, Alves AL (2013) Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae) inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin. Neotrop Ichthyol 11:111–116. https://doi.org/10.1590/S1679-62252013000100013

    Article  Google Scholar 

  24. Boubli JP, Rylands AB, Farias IP, Alfaro ME, Alfaro JWL (2012) Cebus phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. Am J Primatol 74:381–393. https://doi.org/10.1002/ajp.21998

    Article  PubMed  Google Scholar 

  25. Brandão KO, Rocha-Reis DA, Garcia C, Pazza R, Almeida-Toledo LF, Kavalco KF (2018) Studies in two allopatric populations of Hypostomus affinis (Steindachner, 1877): the role of mapping the ribosomal genes to understand the chromosome evolution of the group. Comp Cytogenet 12:1–12. https://doi.org/10.3897/CompCytogen.v12i1.22052

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bueno V, Venere PC, Zawadzki CH, Margarido VP (2013) Karyotypic diversification in Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae): biogeographical and phylogenetic perspectives. Rev Fish Biol Fish 23:103–112. https://doi.org/10.1007/s11160-012-9280-8

    Article  Google Scholar 

  27. Bueno V, Venere PC, Konerat JT, Zawadzki CH, Vicari MR, Margarido VP (2014) Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus. Sci World J

  28. Buvanendran V, Finney DJ (1967) Linkage relationships of egg albumen loci in the domestic fowl. Br Poult Sci 8:9–13. https://doi.org/10.1080/00071666708415644

    Article  Google Scholar 

  29. Cardoso YP, Brancolini F, Paracampo AH, Lizarralde MS, Covain R, Montoya Burgos JI (2016) Hypostomus formosae, a new catfish species from the Paraguay River Basin with redescription of H. boulengeri (Siluriformes: Loricariidae). Ichthyol Explor Freshw 27:9–23

    Google Scholar 

  30. Cardoso YP, Brancolini F, Protogino L, Paracampo A, Bogan S, Posadas P, Montoya-Burgos JI (2019) An integrated approach clarifies the cryptic diversity in Hypostomus Lacépède 1803 from the Lower La Plata Basin. An Acad Bras Ciênc 91:e20180131. https://doi.org/10.1590/0001-3765201920180131

    Article  PubMed  Google Scholar 

  31. Cardoso YP, Brancolini F, Protogino L, Lizarralde M (2011) Actinopterygii, Siluriformes, Loricariidae, Hypostomus aspilogaster (Cope, 1894). Distribution extension and first record for Argentina. Check List 7, 596–598.

  32. Cardoso YP, Almirón A, Casciotta J, Alchino D, Lizarralde MS, Montoya-Burgos JI. (2012). Origin of species diversity in the catfish genus Hypostomus (Siluriformes: Loricariidae) inhabiting the Paraná river basin, with the description of a new species. Zootaxa, 3453: 69–83.

  33. Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383

    Article  PubMed  Google Scholar 

  34. Carvalho PH, Lima SMQ, Zawadzki CH, Oliveira C, Pinna M (2015) Phylogeographic patterns in suckermouth catfish Hypostomus ancistroides (Loricariidae): dispersion, vicariance and species complexity across a Neotropical biogeographic region. Mitochondria DNA. https://doi.org/10.3109/19401736.2015.1079822

    Article  Google Scholar 

  35. Carvalho-Costa LF, Hatanaka T, Galetti PM Jr (2006) Isolation and characterization of polymorphic microsatellite markers in the migratory fish Prochilodus costatus. Mol Ecol 6:818–819. https://doi.org/10.1111/j.1471-8286.2006.01356.x

    Article  CAS  Google Scholar 

  36. Carvalho DC, Oliveira DAA, Pompeu PS, Leal CG, Oliveira C, Hanner R. (2011). Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin, Mitochondrial DNA, 22: 80–86.

  37. Casatti L, Rocha FC, Pereira DC (2005) Habitat use by two species of Hypostomus (Pisces, Loricariidae) in Southeastern Brazilian streams. Biota Neotrop

  38. Centofante L, Bertollo LAC, Moreira-Filho O (2002) A ZZ/ZW sex chromosome system in a new species of the genus Parodon (Pisces, Parodontidae). Caryologia 55:139–150. https://doi.org/10.1080/00087114.2002.10589270

    Article  Google Scholar 

  39. Cereali SS, Pomini E, Rosa R, Zawadzki CH, Froehlich OL, Giuliano-Caetano L (2008) Karyotype description of two species of Hypostomus (Siluriformes, Loricariidae) of the Planalto da Bodoquena, Brazil. Genet Mol Res 7:583–591. https://doi.org/10.4238/vol7-3gmr404

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Leibenguth F (1995) Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish Carrasius auratusfibelio. Biochem Genet 3:297–306. https://doi.org/10.1007/BF02399929

    Article  Google Scholar 

  41. Cilleros K, Valentini A, Allard L, Dejean T, Etienne R, Grenouillet G, Brosse S (2019) Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes. Mole Ecol Res 7:1–20

  42. Corley-Smith GE, Lim CJ, Brandhorst BP (1996) Production of androgenetic zebrafish Danio rerio. Genetics 142:1265–1276. PubMed PMID: 8846903; PubMed Central PMCID: PMC1207123

  43. Csenscics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793. https://doi.org/10.1093/jhered/esq069

    Article  CAS  Google Scholar 

  44. Dawson IK, Waugh R, Simons J, Powell W (1997) Simple sequence repeats provide a direct estimate of pollen-mediated gene dispersal in the tropical tree Gliridia sepium. Mol Ecol 6:179–183. https://doi.org/10.1046/j.1365-294X.1997.00163.x

    Article  CAS  Google Scholar 

  45. Dias A, Zawadzki CH. (2018). Identification key and pictures of the Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae) from the rio Ivaí, upper rio Paraná basin. Check List, 14: 393–414.

  46. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185. https://doi.org/10.3732/ajb.1200020

    Article  CAS  PubMed  Google Scholar 

  47. Endo KS, Martinez ERM, Zawadzki CH, Paiva LRS, Junior HFJJ. (2012). Karyotype description of possible new species of the Hypostomus ancistroides complex (Teleostei: Loricariidae) and other Hypostominae. Acta Scientiarum. Biological Sciences, 34:181–189

  48. Eschmeyer WN, Fong, JD, Van-Der-Laan, R (2020) Catalog of Fishes. https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 20 March 2020

  49. Evans NT, Li Y, Renshaw MA, Olds BP, Deiner K, Turner CR, Pfrender ME (2017) Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian J Fish Aquat Sci 1374(January) 1–13

  50. Favarato RM, Silva M, Oliveira RR, Artoni RF, Feldberg E, Matoso DA (2016) Cytogenetic diversity and the evolutionary dynamics of rDNA genes and telomeric sequences in the Ancistrus genus (Loricariidae: Ancistrini). Zebrafish 13:103–111. https://doi.org/10.1089/zeb.2015.1140

    Article  PubMed  Google Scholar 

  51. Feldberg E, Bertollo LAC, Almeida-Toledo LF, Foresti F, Moreira-Filho O, Santos AF (1987) Biological aspects of Amazonian fishes: IX. Cytogenetics studies in two species of the genus Semaprochilodus. Genome 38:1–4. https://doi.org/10.1139/g87-001

    Article  Google Scholar 

  52. Ferraris Jr CJ (2007) Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalog of siluriform primary types. Zootaxa 1:1–628

  53. Ferreira GEB, Barbosa LM, Prizon-Nakajima AC, Paiva S, Vieira MMR, Gallo RB, Borin-Carvalho LA, da Rosa R, Zawadzki CH, Martins-Santos IC, Portela-Castro ALB (2019) Constitutive heterochromatin heteromorphism in the Neotropical armored catfish Hypostomus regani (Ihering, 1905) (Loricariidae, Hypostominae) from the Paraguay River basin (Mato Grosso do Sul, Brazil). Comp Cytogenet 13(1):27–39. https://doi.org/10.3897/CompCytogen

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ferreira ME, Grattapaglia D (1998) Introduction to the use of molecular markers in genetic analysis. Embrapa-Cenargem

  55. Fricke R, Eschmeyer WN, Van der Laan R. (2020). Eschmeyer’s catalog of fishes: genera, species, references. Available in: https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.aspElectronic version accessed June 2019

  56. Froese R, Pauly D. (2020). FishBase. World Wide Web electronic publication. https://www.fishbase.org/home.htm. Accessed in April.

  57. Galetti Jr. PM, Foresti F, Bertollo LAC, Moreira-Filho O (1981) Heteromorphic sex chromosome in three species of the Leporinus (Pisces, Anostomidae). Cytogenetics and Cell Genetics, 49:138–142

  58. Galindo BA, Ferreira DG, Almeida FS, Carlsson J, Sofia SH (2015) Isolation and characterization of 13 polymorphic microsatellite loci in Hypostomus ancistroides (Teleostei, Loricariidae) and cross-amplification in related species. J Fish Biol 86:1860–1866. https://doi.org/10.1111/jfb.12675

    Article  CAS  PubMed  Google Scholar 

  59. Giuliano-Caetano L (1998) Chromosomal robertsonian polymorphism polimorfismo in populations of Rineloricaria latirostris (Pisces, Loricariinae). Ph.D. Thesis. Department of Biological Sciences, Federal University of São Carlos

  60. Godoy FMR, Lenzi M, Ferreira BHS, Silva LV, Zanella CM, Paggi GM (2018) High genetic diversity and moderate genetic structure in the self-incompatible, clonal Bromelia hieronymi (Bromeliaceae). Bot J Linn Soc 20:1–17. https://doi.org/10.1093/botlinnean/boy037

    Article  Google Scholar 

  61. Gomes LC, Pessali TC, Sales NG, Pompeu PS, Carvalho DC (2015) integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143(581)

  62. Grant CEH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175. https://doi.org/10.1111/j.1461-0248.2006.01007.x

    Article  Google Scholar 

  63. Grey EK, Bernatchez L, Cassey P, Deiner K, Deveney M, Howland KL, Lodge DM (2018) Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. Sci Rep 8(1): 2–11

  64. Haaf T, Schmid M (1984) An early stage of ZZ/ZW sex chromosomes differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma 89:37–41

    Article  Google Scholar 

  65. Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706. https://doi.org/10.1016/S0169-5347(01)02326-6

    Article  Google Scholar 

  66. He T, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004) Long-distance dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Mol Ecol 13:1099–1109. https://doi.org/10.1111/j.1365-294X.2004.02120.x

    Article  CAS  PubMed  Google Scholar 

  67. Hebert PDN, Cywinska A, Ball SL, De Waard JR: Biological identifications through DNA barcodes (2003) Proc Biol Sci 270:313–321

  68. Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, Wang Q, Crous P, Robert V, Helgason T, Herr JR, Kirk P, Lueschow S, O’Donnell K, Nilsson RH, Oono R, Schoch C, Smyth C, Walker DM, Porras-Alfaro A, Taylor JW, Geiser DM (2016) Sequence-based classification and identification of Fungi. Mycologia 1:16–130. https://doi.org/10.3852/16-130

    Article  Google Scholar 

  69. Hillis DM, Mable BK, Moritz C (1996) The state of the field and a look to the future. In applications of molecular systematics. Mol syst 1:515–543

    Google Scholar 

  70. Hocutt CH, Wiley EO (1986) The zoogeography of North American freshwater fishes.

  71. Hubert N, Duponchelle F, Nuñez J, Garcia-Davila C, Paugy D, Renno JF (2007) Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna Mol Ecol 16:2115–2136

  72. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3:2490

  73. Ito KF, Renesto E, Zawadzki CH (2009) Biochemical comparison of two Hypostomus populations (Siluriformes, Loricariidae) from the Atlântico Stream of the upper Paraná River basin, Brazil. Genet Mol Biol 32:51–57. https://doi.org/10.1590/s1415-47572009000100008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kamei MCSL, Baumgartner L, Paiva S, Zawadzki CH, Martins-Santos IC, Portela-Castro ALB (2017) Chromosomal diversity of three species of Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae), from the Parana River Basin, Brazil: a species complex in Hypostomus ancistroides reinforced by a ZZ/ZW sex Chromosome System. Zebrafish 14:4 https://doi.org/10.1089/zeb.2017.1429

    Article  CAS  Google Scholar 

  75. Kavalco KF, Pazza R, Bertollo LAC, Moreira-Filho O (2004) Gene mapping of 5S rDNA sites in eight fish species from the Paraiba do Sul river basin, Brazil. Cytogenet Genome Res 106:107–110. https://doi.org/10.1159/000078567

    Article  CAS  PubMed  Google Scholar 

  76. Kazianis S, Morizot DC, McEntire BB, Nairn RS, Borowsky RL (1996) Genetic mapping in Ziphophorus hybrid fish: assignment of 43 AP-PCR RAPD and isozyme markers to multipoint linkage groups. Genome Resolution 6:280–289. https://doi.org/10.1101/gr.6.4.280

    Article  CAS  Google Scholar 

  77. Le Bail PY, Keith P, Planquette P (2000) Atlas des poissons d'eau douce de Guyane, tome 2, fasc. 2. Collect Patrim Nat 43:307

  78. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control region. J Mol Evol 41:54–66. https://doi.org/10.1007/bf00174041

    Article  CAS  PubMed  Google Scholar 

  79. Lilyestrom HG (1984) Consideraciones sobre la taxonomia del género Cochliodon Heckel en Venezuela (Pisces, Loricariidae). Revista UNNELLEZ de Ciencia y Tecnologia 2:41–53

    Google Scholar 

  80. Linda KP, Paul M (1995) Developments in molecular genetic techniques in fisheries. In: G.R. Carvalho and T.J. Pitcher. Mol Genet Fish 1:1–28

  81. Linderholm A (2016) Ancient DNA: the next generation – chapter and verse. Biol J Lin Soc 117:150. https://doi.org/10.1111/bij.12616

    Article  Google Scholar 

  82. Liu S, Zhang L, Yao J, Liu Z (2014) The complete mitochondrial genome of the armored catfish, Hypostomus plecostomus (Siluriformes: Loricariidae). Mitochondria DNA. https://doi.org/10.3109/19401736.2014.971281

    Article  Google Scholar 

  83. Lorscheider CA, Zawadzki CH, Vicari MR, Martins-Santos IC, Artoni RF (2015) Karyotypic diversity of the armored catfish genus Hypostomus (Siluriformes: Loricariidae) in the context of its occurrence and distribution. J Fish Biol 87:1099–1110. https://doi.org/10.1111/jfb.12762

    Article  CAS  PubMed  Google Scholar 

  84. Lu R, Rank GH (1996) Use of RAPD analysis to estimate population genetic parameters in the Alfalfa leafcutting bee, Megachitero tundate. Genome 39:655–663. https://doi.org/10.1139/g96-083

    Article  CAS  PubMed  Google Scholar 

  85. Lujan NK, Armbruster JW, Lovejoy NR, López-Fernández H (2015) Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Mol Phylogenet Evol 82:269–288. https://doi.org/10.1016/j.ympev.2014.08.020

    Article  PubMed  Google Scholar 

  86. Lujan NK, Armbruster JW (2011) The Guiana Shield. In: Albert, J., Reis, R. (eds.) Historical Biogeography of Neotropical Freshwater Fishes. l Freshwater Fishes. University of California Press, Berkeley 1:211–224

  87. Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1988) The stage for Neotropical fish diversification: A history of tropical South American rivers. In: Phylogeny and Classification of Neotropical Fishes 1:13–48 Edipucrs Porto Alegre

  88. López HL, Miquelarena AM (1991) Los hypostominae (Pisces: Loricariidae) de Argentina. Fauna de Agua Dulce de la República Argentina 40:1–64

    Google Scholar 

  89. Maldonado-Ocampo JA, Orteaga-Lara A, Usma-Oviedo JS, Galvis-Vergara G, Villa-Navarro FA, Vásquez-Gamboa L, Prada-Pedreros S, Ardila-Rodríguez C (2005) Peces de los andes de Colombia. Instituto de Investigación de Recursos Biológicos (Alexander von Humboldt) Bogotá,DC

    Google Scholar 

  90. Malmström H, Linderholm A, Lidén K, Storå J, Molnar P, Holmlund G, Jakobsson M, Götherström A (2010) High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evol Biol 10:89

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mamuris Z, Stamatis C, Triantaphyllidis C (1999) Intraspecific genetic variation of striped red mullet (Mullus surmuletus L.) in the Mediterranean sea assessed by allozyme and random amplified polymorphic DNA (RAPD) analysis. Heredity 83:30–38. https://doi.org/10.1038/sj.hdy.6885400

    Article  CAS  PubMed  Google Scholar 

  92. Martinez ERM, Zawadzki CH, Foresti F, Oliveira C (2011) Cytogenetic analysis of five Hypostomus species (Siluriformes, Loricariidae). Genet Mol Biol 34:562–568. https://doi.org/10.1590/s1415-47572011005000038

    Article  PubMed  PubMed Central  Google Scholar 

  93. Maurutto FAM, Manvailer LFS, Sczepanski MMC, Artoni RF (2013) Cytogenetic characterization of three allopatric species of Hypostomus Lacépède (1803) (Teleostei, Loricariidae). Caryologia: Int J Cytol. Cytosyst Cytogenet 65:340–346. https://doi.org/10.1080/00087114.2012.760882

    Article  Google Scholar 

  94. Mazzoni R, Caramaschi U, Weber C (1994) Taxonomical revision of the species of Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae) from the Lower rio Paraiba do Sul, State of Rio de Janeiro, Brazil. Rev Suisse Zool 101:3–18. https://doi.org/10.5962/bhl.part.79897

    Article  Google Scholar 

  95. Mejía O, León-Romero Y, Soto-Galera E (2012) DNA barcoding of the ichthyofauna of Pánuco–Tamesí complex: Evidence for taxonomic conflicts in some groups. Mitochondrial DNA 23:471–476

  96. Mendes-Neto EO, Vicari MR, Artoni RF, Moreira-Filho O (2011) Description of karyotype in Hypostomus regani (Ihering, 1905) (Teleostei, Loricariidae) from the Piumhi river in Brazil with comments on karyotype variation found in Hypostomus. Comp Cytogenet 5:133–142. https://doi.org/10.3897/compcytogen.v5i2.964

    Article  PubMed Central  Google Scholar 

  97. Meyer A (1993) Evolution of mitochondrial DNA in fishes. In: Hochachka, P.W.; Mommsen, T.P. (eds.), Biochemistry and Molecular Biology of Fishes. Elsevier Science Publications 1:1–38

  98. Milhomem SSR, Castro RR, Nagamachi CY, Souza ACP, Feldberg E, Pieczarka JC (2010) Different cytotypes in fishes of the genus Hypostomus Lacépède, 1803, (Siluriformes: Loricariidae) from Xingu river (Amazon region, Brazil). Comp Cytogenet 4:45–54. https://doi.org/10.3897/compcytogen.v4i1.31

    Article  Google Scholar 

  99. Montoya-Burgos JI (2003) Historical biogeography of the catfish genus Hypostomus (Siluriformes: Loricariidae), with implications on the diversification of Neotropical ichthyofauna. Mol Ecol 12:1855–1867. https://doi.org/10.1046/j.1365-294x.2003.01857.x

    Article  CAS  PubMed  Google Scholar 

  100. Montoya-Burgos JI, Weber C, Le Bail PY (2002) Phylogenetic relationships within Hypostomus (Siluriformes: Loricariidae) and related genera based on mitochondrial D-loop sequences. Rev Suisse Zool 109:369–382. https://doi.org/10.5962/bhl.part.79596

    Article  Google Scholar 

  101. Moreira-Filho O, Bertollo LAC, Galetti PM Jr (1993) Distribution of sex chromosome mechanisms in Neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae). Caryologia 46:115–125. https://doi.org/10.1080/00087114.1993.10797253

    Article  Google Scholar 

  102. Morelli KA, Revaldaves E, Oliveira C, Foresti F (2007) Isolation and characterization of eight microsatellite loci in Leporinus macrocephalus (Characiformes: Anostomidae) and cross-species amplification. Mol Ecol Notes 7:32–34. https://doi.org/10.1111/j.1471-8286.2006.01484.x

    Article  CAS  Google Scholar 

  103. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. https://doi.org/10.1016/j.ygeno.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  104. Moss DW (1982) Isoenzymes Chapman & Hall, London & New York

  105. Muneepeerakul R, Bertuzzo E, Lynch HJ, Fagan WF, Rinaldo A, Rodriguez-Iturbe I (2008) Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453:453–222. https://doi.org/10.1038/nature06813

    Article  CAS  Google Scholar 

  106. Muramoto J, Ono S (1968) On the Diploid State of the Fish Order Ostariophysi. Chromosoma 24:59–66. https://doi.org/10.1007/bf00329607

    Article  CAS  PubMed  Google Scholar 

  107. O'Brien SJ (1991) Mammalian genome mapping: lessons and prospects. Curr Opin Genet Dev 1:105–111. https://doi.org/10.1016/0959-437X(91)80050-V

    Article  CAS  Google Scholar 

  108. De Oliveira DC, Bennemann ST (2005) Ictiofauna, recursos alimentares e relações com as interferências antrópicas em um riacho urbano no sul do Brasil. Biota Neotrop 5(1):95–107. https://doi.org/10.1590/S1676-06032005000100011

    Article  Google Scholar 

  109. Oliveira RR, Feldberg E, Anjos MB, Zuanon J (2007) Karyotype characterization and ZZ/ZW sex chromosome heteromorphism in two species of the catfish genus Ancistrus Kner, 1854 (Siluriformes: Loricariidae) from the Amazon basin. Neotrop Ichthyol 5(3):301–306. https://doi.org/10.1590/S1679-62252007000300010

    Article  Google Scholar 

  110. Oliveira LC, Ribeiro MO, Costa GM, Zawadzki CH, Prizon-Nakajima AC, Borin-Carvalho LA, Martins-Santos IC, Portela-Castro ALB (2019) Karyotype structure of Hypostomus cf. plecostomus (Linnaeus, 1758) from Tapajós River basin, Southern Amazon: occurrence of sex chromosomes (ZZ/ZW) and their evolutionary implications. Genet Mole Res 14:6625–6634. https://doi.org/10.4238/2015.june.18.5

    Article  Google Scholar 

  111. Oyakawa OT, Akama A, Zanata AM (2005) Review of the genus Hypostomus Lacépède, 1803 from Ribeira do Iguape basin, with description of a new species (Pisces, Siluriformes, Loricariidae). Zootaxa 921:1–27

  112. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:7–16. https://doi.org/10.1186/1742-9994-7-16

    Article  Google Scholar 

  113. Paiva S, Renesto E, Zawadzki CH (2005) Genetic variability of Hypostomus (Teleostei, Loricariidae) from the Ribeirão Maringá, a stream of the upper Rio Paraná basin, Brazil. Genet Mol Biol 28:370–375. https://doi.org/10.1590/s1415-47572005000300005

    Article  Google Scholar 

  114. Paiva S, Zawadzki CH, Ruvulo-Takasusuki MCC, Lapenta AS, Renesto E (2013) Allozyme analysis of the four species of Hypostomus (Teleostei: Loricariidae) from the Ivaí river, upper Paraná river basin, Brazil. Acta Sci Biol Sci 35:571–578. https://doi.org/10.4025/actascibiolsci.v35i4.16355

    Article  Google Scholar 

  115. Paltchamy K, Senthivel S, Geethajali S, Sujatha M, Varaprasad KS (2015) Genetic markers, trait mapping, and marker-assisted selection in plants breeding. Plant Biol Biotechnol 2:65–85. https://doi.org/10.1007/978-81-322-2283-5_4

    Article  Google Scholar 

  116. Pansonato-Alves JC, Serrano EA, Utsunomia R, Scacchetti PC, Oliveira C, Foresti F (2013) Mapping five repetitive DNA classes in sympatric species of Hypostomus (Teleostei: Siluriformes: Loricariidae): analysis of chromosomal variability. Rev Fish Biol Fish. https://doi.org/10.1007/s11160-013-9303-0

    Article  Google Scholar 

  117. Paradis E (2011) Analysis of phylogenetics and evolution with R 2. Springer, New York

    Google Scholar 

  118. Parida SK, Kalia SK, Sunita K, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2006) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338. https://doi.org/10.1007/s00122-008-0902-4

    Article  CAS  Google Scholar 

  119. Pereira AH, Facchin S, Carmo AO, Rodriguez DN, Resende LC, Kalapothakis Y, Pinto PBDF, Alves CBM, Zawadzki CH, Kalapothakis E (2019) Complete mitochondrial genome sequence of Hypostomus francisci (Siluriformes: Loricariidae), Mitochondrial DNA Part B 4(1):155–157

  120. Pfeil F, Zawadzki CH, Silva HP, Troy W (2018) Redescription of Hypostomus latirostris (Regan, 1904) with the recognition of a new species of Hypostomus (Siluriformes: Loricariidae) from the upper rio Paraguay basin, Brazil. Ichthyological Exploration of Freshwaters. https://doi.org/10.23788/IEF-1079

  121. Piorski NM, Garavello JC, Arce HM, Pérez MHS (2008) Platydoras brachylecis, a new species of thorny catfish (Siluriformes: Doradidae) from northeastern Brazil. Neotrop Ichthyol 6:481–494. https://doi.org/10.1590/s1679-62252008000300021

    Article  Google Scholar 

  122. Ponzetto JM, Alves AL, Varela ES, Villela LCV, Caetano AR (2017) Molecular phylogeny inferred from the concatenated genes of two neotropical catfish species and implications for conservation. J Phylogenet Evolut Biol 5:176–184. https://doi.org/10.4172/2329-9002.1000176

    Article  CAS  Google Scholar 

  123. Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates MA (1994) Genetic linkage map for the zebrafish. Science 264:699–705. https://doi.org/10.1126/science.8171321

    Article  CAS  PubMed  Google Scholar 

  124. Queiroz JL, Cardoso Y, Jacot-des-Combes C, Bahechar AI, Lucena AC, Rapp DPL, Soares MSL, Nylinder S, Oliveira C, Parente TE, Torrente-Vilara G, Covain R, Buckup P, Montoya-Burgos JI (2019) Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Mol Phylogenet Evol S1055–7903(19):30305–30307. https://doi.org/10.1016/j.ympev.2019.106711

    Article  Google Scholar 

  125. Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. https://doi.org/10.1371/journal.pone.0089543

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rabosky DL, Slater GJ, Alfaro ME (2012) Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001381

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ramos TPA, Zawadzki CH, Ramos RTC, Britski HA (2017) Redescription of Hypostomus johnii, a senior synonym of Hypostomus eptingi (Siluriformes: Loricariidae). Northeastern Brazil Neotrop Ichthyol. https://doi.org/10.1590/1982-0224-20160064

    Article  Google Scholar 

  128. Ray CK, Armbruster JW (2016) The genera Isorineloricaria and Aphanotorulus (Siluriformes: Loricariidae) with description of a new species. Zootaxa 4072:501–539

  129. Reis RE, Kullander SO, Ferrari JRCJ (2003) Checklist of the freshwater fishes of South and Central. EDIPUCRS, América. Porto Alegre

    Google Scholar 

  130. Reis RE, Weber C, Malabarba LR (1990) Review of the genus Hypostomus Lacépède, 1803 from southern Brazil, with descriptions of three new species (Pisces: Siluriformes: Loricariidae). Rev Suisse Zool 97:729–766. https://doi.org/10.5962/bhl.part.79760

    Article  Google Scholar 

  131. Reis-Filho JS (2009) Next-generation sequencing. Breast Cancer Res 11:12. https://doi.org/10.1186/bcr2431

    Article  CAS  Google Scholar 

  132. Renesto E, Zawadzki CH, Paiva S (2007) Allozyme differentiation and relationships within Hypostomus Lacépède, 1803 (Osteichthyes: Loricariidae) from the upper Paraguay River basin, Brazil. Biochem Syst Ecol 35:869–876. https://doi.org/10.1016/j.bse.2007.06.002

    Article  CAS  Google Scholar 

  133. Revaldaves E, Pereira LHG, Foresti F, Oliveira C (2005) Isolation and characterization of microsatellite loci in Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) and cross-species amplification. Mol Ecol Notes 5:463–465. https://doi.org/10.1111/j.1471-8286.2005.00883.x

    Article  CAS  Google Scholar 

  134. Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210x.2011.00169.x

    Article  Google Scholar 

  135. Ribeiro AO, Caires RA, Mariguela TC, Pereira LHG, Hanner R, Oliveira C (2012) DNA barcodes identify marine fishes of São Paulo State, Brazil. Mol Ecol Res 12:1012–1020. https://doi.org/10.1111/1755-0998.12007

    Article  CAS  Google Scholar 

  136. Ricklefs RE (2007) Estimating diversification rates from phylogenetic information. Trends Ecol Evol 22:601–610. https://doi.org/10.1016/j.tree.2007.06.013

    Article  PubMed  Google Scholar 

  137. Roxo FF, Lujan NK, Tagliacollo VA, Waltz BT, Silva GSC, Oliveira C, Albert JS (2017) Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 6:e0178240

    Article  Google Scholar 

  138. Roxo FF, Ochoa LE, Sabaj MH, Lujan NK, Covain R, Silva GSC, Melo BF, Albert JS, Chang J, Foresti F, Alfaro ME, Oliveira C (2019) Phylogenomic reappraisal of the neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Mol Phylogenet Evol 135:148–165. https://doi.org/10.1016/j.ympev.2019.02.017

    Article  PubMed  Google Scholar 

  139. Rubert M, Rosa R, Jerep FC, Bertollo LAC, Giuliano-Caetano L (2011) Cytogenetic characterization of four species of the genus Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae) with comments on its chromosomal diversity. Comp Cytogenet 5:397–410. https://doi.org/10.3897/compcytogen.v5i5.1589

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rubert M, Rosa R, Zawadzki CH, Mariotto S, Moreira-Filho O, Giuliano-Caetano L (2016) Chromosome mapping of 18S ribosomal RNA genes in eleven Hypostomus species (Siluriformes, Loricariidae): diversity analysis of the sites. Zebrafish 13:4. https://doi.org/10.1089/zeb.2016.1279

    Article  CAS  Google Scholar 

  141. Rubert M, Zawadzki CH, Giuliano-Caetano L (2008) Cytogenetic characterization of Hypostomus nigromaculatus (Siluriformes: Loricariidae). Neotrop Ichthyol 6:93–100. https://doi.org/10.1590/s1679-62252008000100011

    Article  Google Scholar 

  142. Rubinoff D, Holland BS (2005) Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952–961. https://doi.org/10.1080/10635150500234674

    Article  PubMed  Google Scholar 

  143. Ruzzante DE, Taggart CT, Cook D, Goddard S (1996) Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Can J Fish Aquat Sci 53:634–645. https://doi.org/10.1139/cjfas-53-3-634

    Article  Google Scholar 

  144. Sales E, Nebauer SG, Mus M, Segura J (2001) Population genetic study in the Balearic endemic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Am J Bot 88:1750–1759. https://doi.org/10.2307/3558349

    Article  CAS  PubMed  Google Scholar 

  145. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448. https://doi.org/10.1016/b978-0-12-131200-8.50040-x

    Article  CAS  PubMed  Google Scholar 

  146. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Santos IC, Portela-Castro ALB (2019) Cytogenetic characterization of Hypostomus soniae Hollanda-Carvalho & Weber, 2004 from the Teles Pires River, southern Amazon basin: evidence of an early stage of an XX/XY sex chromosome system. Comp Cytogenet 13(4):411–422. https://doi.org/10.3897/CompCytogen.v13i4.36205

    Article  Google Scholar 

  148. Scavone MDP, Júlio HF Jr (1995) Cytogenetics analysis and heterochromatin distribution in ZZ/ZW sex chromosomes of the mailed catfish Loricariichthys platymetopon (Loricariidae, Siluriformes). Braz J Genet 18:31–35

    Google Scholar 

  149. Schierwater B, Ender A (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 19:8. https://doi.org/10.1093/nar/21.19.4647

    Article  Google Scholar 

  150. Schwartz MK, Luikart G, Waples RS (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33

  151. Silva GSC, Roxo FF, Lujan NK, Tagliacollo VA, Zawadzki CH, Oliveira C (2016) Transcontinental dispersal, ecological opportunity and origins of an adaptive radiation in the Neotropical catfish genus Hypostomus (Siluriformes: Loricariidae). Mol Ecol 25:1511–1529. https://doi.org/10.1111/mec.13583

    Article  PubMed  Google Scholar 

  152. Skroch P, Neinhuis J (1995) Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor Appl Genet 91:91. https://doi.org/10.1007/bf00223923

    Article  Google Scholar 

  153. Smith GR (1981) Late Cenozoic freshwater fishes of North America. Annu Rev Ecol Syst 12:163–193. https://doi.org/10.1146/annurev.es.12.110181.001115

    Article  Google Scholar 

  154. Sofia SH, Galindo BA, Paula FM, Sodré LMK, Martinez CBR (2008) Genetic diversity of Hypostomus ancistroides (Teleostei, Loricariidae) from an urban stream. Genet Mol Biol 31:317–323. https://doi.org/10.1590/s1415-47572008000200027

    Article  CAS  Google Scholar 

  155. Sorenson L, Santini F, Alfaro ME (2014) The effect of habitation modern shark diversification. J Evol Biol 27:1536–1548. https://doi.org/10.1111/jeb.12405

    Article  CAS  PubMed  Google Scholar 

  156. Suneetha BK (2000) Interspecific and interspecific genetic variation in selected mesopelagic fishes with emphasis on microgeographic variation and species characterization. Dr. Scient. Dissertation, Department of Fisheries and Marine Biology, University of Bergen, Bergen, Norway

  157. Sunnucks P (2001) Efficient genetic markers for population biology. Tree 15:199–203. https://doi.org/10.1016/s0169-5347(00)01825-5

    Article  Google Scholar 

  158. Tagliacollo VA, Roxo FF, Duke-Sylvester SM, Oliveira C, Albert JS (2015) Biogeographical signature of river capture events in Amazonian lowlands. J Biogeogr 42:2349–2362. https://doi.org/10.1111/jbi.12594

    Article  Google Scholar 

  159. Taylor AC, Sherwin WB, Wayne RK (1994) Genetic variation of microsatellite loci in a bottlenecked species: The northern hairy-nosed wombat Lasiorhinus krefftii. Mol Ecol 3:277–290. https://doi.org/10.1111/j.1365-294x.1994.tb00068.x

    Article  CAS  PubMed  Google Scholar 

  160. Telles MPC, Resende LV, Brondani RPV, Collevatti RG, Costa MC, Silva Júnior NJ (2010) Isolation and characterization of microsatellite markers in the armored catfish Hypostomus gymnorhynchus (Loricariidae). Genet Mol Res 9:1770–1774. https://doi.org/10.4238/vol9-3gmr868

    Article  CAS  PubMed  Google Scholar 

  161. Thorpe KL, Maack G, Benstead R, Tyler CHR (2009) Estrogenic wastewater treatment works effluents reduce eff production in fish. Environ Sci Technol 43:2976–2982. https://doi.org/10.1021/es803103c

    Article  CAS  PubMed  Google Scholar 

  162. Thorpe JP, Sole-Cava AM (1994) The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 23(1):3–18. https://doi.org/10.1111/j.1463-6409.1994.tb00368.x

    Article  Google Scholar 

  163. Traldi JB, Blanco DR, Vicari MR, Martinez JF, Lui RL, Artoni RF, Moreira-Filho O (2013) Physical mapping of (GATA)n and (TTAGGG)n sequences in species of Hypostomus (Siluriformes, Loricariidae). J Genet 92:127–130. https://doi.org/10.1007/s12041-013-0224-4

    Article  PubMed  Google Scholar 

  164. Traldi JB, Vicari MR, Blanco DR, Martinez JF, Artoni RF, Moreira-Filho O (2012) First karyotype description of Hypostomus iheringii (Regan, 1908): a case of heterochromatic polymorphism. Comp Cytogenet 6:115–125. https://doi.org/10.3897/compcytogen.v6i2.2595

    Article  PubMed  PubMed Central  Google Scholar 

  165. Turchetto-Zolet AC, Turchetto C, Zanella CM, Passaia G (2017) Marcadores Moleculares na Era genômica: Metodologias e Aplicações. Sociedade Brasileira de Genética

  166. Varshney RK, Graner A, Sorrelis ME (2005) Genetic microsatellite markers in plants: feature and applications. Trends Biotechnol 23:48–55. https://doi.org/10.1016/j.tibtech.2004.11.005

    Article  CAS  Google Scholar 

  167. Vieira RS, Renesto E (2016) Genetic variability in three populations of Hypostomus hermanni (Teleostei: Loricariidae) found in the basins of Ivaí River, Tietê River, and Sapucaí-Mirim River of Brazil. Genet Mol Res 15:4. https://doi.org/10.4238/gmr15049056

    Article  Google Scholar 

  168. Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53:394–412. https://doi.org/10.1111/j.1095-8649.1998.tb01039.x

    Article  Google Scholar 

  169. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857

  171. Weber C, Montoya-Burgos JI (2002) Hypostomus fonchii sp. n. (Siluriformes: Loricariidae) from Peru, a key species suggesting the synonymy of Cochliodon with Hypostomus. Rev. Suisse Zool 109:355–368

  172. Weber C (2003) The Hypostominae. pp. 351–372 In: Reis RE, Kullander SO, Ferraris Jr CJ (eds) Check list of the freshwater fishes of South and Central America. Porto Alegre Edipucrs

  173. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6231–6235

    Article  Google Scholar 

  174. Winemiller KO, Lopez-Fernandez H, Taphorn DC, Nico LG, Duque AB (2008) Fish assemblages of Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basin. J Biogeogr 35:1551–1563. https://doi.org/10.1111/j.1365-2699.2008.01917.x

    Article  Google Scholar 

  175. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yang W, Kang X, Yang Q, Lin Y, Fang M (2013) Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biol 4:1–6. https://doi.org/10.1186/2049-1891-4-2

    Article  Google Scholar 

  177. Yue GH, Orban L (2002) Microsatellites from genes show polymorphism in two related Oreochromis species. Mol Ecol 2:99–100. https://doi.org/10.1046/j.1471-8286.2002.00159.x

    Article  CAS  Google Scholar 

  178. Zawadzki CH, Birindelli JLO, Lima FCT (2012) A new armored catfish species of the genus Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae) from the upper rio Xingu basin, Brazil. Neotrop Ichthyol 10:245–253. https://doi.org/10.1590/S1679-62252012000200003

    Article  Google Scholar 

  179. Zawadzki CH, Machado MFPS, Renesto E (2001) Differential expression for tissue-specific isozymes in three species of Hypostomus Lacépède, 1803 (Teleostei: Loricariidae). Biochem Syst Ecol 29:911–922. https://doi.org/10.1016/s0305-1978(00)00101-0

    Article  CAS  PubMed  Google Scholar 

  180. Zawadzki CH, Renesto E, Bini LM (1999) Genetic and morphometric analysis of three species of the genus Hypostomus Lacépède, 1803 (Osteichthyes: Loricariidae) from the Rio Iguaçu basin (Brazil). Rev Suisse Zool 106:91–105. https://doi.org/10.5962/bhl.part.80072

    Article  Google Scholar 

  181. Zawadzki CH, Renesto E, Mateus RP (2008) Allozyme Analysis of Hypostomus (Teleostei: Loricariidae) from the Rio Corumbá Upper Rio Paraná Basin, Brazil. Biochem Genet 6:755–769. https://doi.org/10.1007/s10528-008-9191-5

    Article  CAS  Google Scholar 

  182. Zawadzki CH, Renesto E, Peres MD, Paiva S (2008) Allozyme variation among three populations of the armored catfish Hypostomus regani (Ihering, 1905) (Siluriformes, Loricariidae) from the Paraná and Paraguay river basins, Brazil. Gen Mol Biol 31:767–771. https://doi.org/10.1590/s1415-47572008000400025

    Article  Google Scholar 

  183. Zawadzki CH, Tencatt LFC, Froehlich O (2014) A new unicuspid-toothed species of Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae) from the rio Paraguay basin. Neotrop Ichthyol 12:97–104. https://doi.org/10.1590/S1679-62252014000100010

    Article  Google Scholar 

  184. Zawadzki C, Weber C, Pavanelli CS (2010) A new dark-saddled species of Hypostomus (Siluriformes: Loricariidae) from the upper rio Paraguay basin. Neotrop Ichthyol 8:719–725. https://doi.org/10.1590/S1679-62252010000400003

    Article  Google Scholar 

  185. Zawadzki CH, Oyakawa OT, Britski HA. (2017) Hypostomus velhochico, a new keeled Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae) from the Rio São Francisco basin in Brazil. Zootaxa 4344:5600

  186. Zawadzki CH, Penido IS, Pessali TC (2018) Rediscovery and redescription of the endangered Hypostomus subcarinatus Castelnau, 1855 (Siluriformes: Loricariidae) from the rio São Francisco basin in Brazil, with comments on the urban water conservation. https://doi.org/10.1101/458604

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Graduate Program of Ecology of Regional Integrated University (URI) for the financial support and scholarships provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Mezzomo.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest that are relevant to the content of this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzomo, P., Mielniczki-Pereira, A.A., Sausen, T.L. et al. Molecular inferences about the genus Hypostomus Lacépède, 1803 (Siluriformes: Loricariidae): a review. Mol Biol Rep 47, 6179–6192 (2020). https://doi.org/10.1007/s11033-020-05542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05542-z

Keywords

Navigation