Skip to main content
Log in

Development of a specific AFLP-based SCAR marker for Chinese Race 34MKG of Puccinia graminis f. sp. tritici

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a fungus that causes the devastating fungalwheat stem rust disease in wheat production. Rapid identification of the physiological races of Pgt are very importance for the prevention of wheat stem rust. In this paper we developed a molecular method to identify the most prevalent race of Pgt, as a supplement for traditionally used host-specific methods. Amplified fragment length polymorphism (AFLP) was employed as a means of analyzing DNA polymorphisms in six common physiological races of Pgt in China and Ug99. In total, 64 pairs of primers were used for AFLP screening of race-specific molecular markers. One primer pair-namely, E7/M7 (5′-GACTGCGTACCAATTCG G-3′/5′-GATGAGTCCTGAGTAACGG-3′)-yielded a unique band for the race 34MKG that was purified and cloned into the pGEM-T vector for sequencing. We then designed a new primer pairs (sequence—characterized amplified region marker) to amplify the 171-bp fragment and confirmed that the marker was highly specific for 34MKG. These results provide a new tool for monitoring different races of Pgt for improved control of wheat stem rust in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dolye JJ, Dolye JL (1990) Isolation of plant DNA from freshtissue. Focus 12:13–15

    Google Scholar 

  2. Janet R Wheat warning–new rust could spread like wildfire [EB/OL] Science News Online. [20052092247]. http://www.sciencenews.org/articles/food.asp

  3. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann Rev Phytopathol 49:465–481

    Article  CAS  Google Scholar 

  4. Chen XM, Line RF, Leung H (1993) Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology 83:1489–1497

    Article  CAS  Google Scholar 

  5. Chen XM, Line RF, Leung H (1995) Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology 85:1335–1342

    Article  CAS  Google Scholar 

  6. McCallum BD, Roelfs AP, Szabo LJ, Groth JV (1999) Comparison of Puccinia graminis f. sp. tritici from South America and Europe. Plant Pathol 48:574–581

    Article  CAS  Google Scholar 

  7. Zambino PJ, Szabo LJ (1993) Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia 85:401–414

    Article  CAS  Google Scholar 

  8. Keiper FJ, Hayden MJ, Park RF, Wellings CR (2003) Molecular genetic variability of Australian isolates of five cereal rust pathogens. Mycolog Res 107:545–556

    Article  CAS  Google Scholar 

  9. Kolmer JA, Liu JQ, Sies M (1995) irulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathology 85:276–285

    Article  CAS  Google Scholar 

  10. Kolmer JA, Liu JQ (2000) Virulence and molecular polymorphism in international collections of the wheat leaf rust fungus Puccinia triticina. Phytopathology 90:427–436

    Article  CAS  Google Scholar 

  11. Liu TG, Wang X, Gao L, Liu B, Chen WQ (2014) A FIASCO–based approach for detection and diagnosis of Puccinia graminis f. sp. tritici in China. J Integr Agric 13:2438–2444

    Article  Google Scholar 

  12. Szabo LJ (2007) Development of simple sequence repeat markers for the plant pathogenic rust fungus, Puccinia graminis. Mol Ecol Notes 7:92–94

    Article  CAS  Google Scholar 

  13. Szabo LJ, Kolmer JA (2007) Development of simple sequence repeat markers for the plant pathogenic rust fungus Puccinia triticina. Mol Ecol Notes 7:708–710

    Article  CAS  Google Scholar 

  14. Wang X, Liu TG, Xiang WS, Chen WQ (2011) Development of a SSR molecular marker for Puccinia graminis f. sp. tritici. Sci Agric Sin 44:4593–4599

    CAS  Google Scholar 

  15. Cao LH, Xu SC, Lin RM, Liu TG, Chen WQ (2008) Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett Appl Microbiol 46:501–506

    Article  Google Scholar 

  16. Hao BJ, Wang BT, Li Q, Li GB, Wang F, Zhang B (2010) Aanalysis and SCAR marker establishment of Su11 group of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin 40:1–6

    Google Scholar 

  17. Wang BT, Hu XP, Li Q, Hao BJ, Zhang B, Li GB, Kang ZS (2010) Development of race–specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis 94:221–228

    Article  CAS  Google Scholar 

  18. Chen S, Cao YY, Li TY, Wu XX (2015) Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica 43:449–460

    Article  CAS  Google Scholar 

  19. Chen S, Cao YY, Li TY (2015) Development of a specific SCAR marker to race 21C3CTH of Puccinia graminis f. sp. tritici in China. Int J Agric Biol 17:1200–1206

    Article  CAS  Google Scholar 

  20. Chen S, Wu JZ, Huang WG, Wu GW, Li TY, Cao YY (2016) SSR markers screening of the races 21C3CPH and Ug99 of Puccinia graminis f. sp. tritici. Mycosystema 12:1526–1534

    Google Scholar 

  21. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nuc Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  22. Schmidt H, Ehrmann M, Vogela RF, Taniwakib MH, Niessena L (2003) Molecular typing of Aspergillus ohraceus and construction of species specific SCAR Primers based on AFLP. Syst Appl Microbiol 26:138–146

    Article  CAS  Google Scholar 

  23. Paran I, Michelmore RW (1993) Development of reliable PCR–based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  24. Zambino PJ, Kubelik AR, Szabo LJ (2000) Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis. Phytopathology 90:819–826

    Article  CAS  Google Scholar 

  25. Pu ZG (2004) Development of a molecular detection assay for the physiological race MFR of Puccinia triticina. Acta Phytopathol Sin 34:449–454

    Google Scholar 

  26. Cao YY, Cao YY, Si BB, Zhu GQ, Xu XF, Li WH, Chen S, Zhao J, Li TY (2019) Races and virulence of asexual and sexual populations of Puccinia graminis f. sp. tritici in China from 2009 to 2015. Eur J Plant Pathol 153:545–555

    Article  Google Scholar 

  27. Yao P, Cao YY, Liu WZ, Wu YS (1997) Race population trend of Puccinia graminis f. sp. tritici in 1990–1994 in China. Acta Phytophyl Sin 24:297–302

    Google Scholar 

  28. Han JD, Cao YY, Sun ZG (2010) Race dynamics of Puccinia graminis f. sp. tritici in China and the virulence of CIMMYT wheat germplasm resistant to Ug99. J Triti Crops 30:163–166

    CAS  Google Scholar 

  29. Cao YY, Chen WQ (2010) Stepwise shift of differential hosts and racial designation of Puccinia graminis f. sp. tritici. J Triti Crops 30:167–172

    Google Scholar 

  30. Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  31. Sun ZG, Cao YY, Han JD, Chen WS (2010) Comparison of diferent methods for extraction of DNA of wheat stem rust urediospores. Hubei Agric Sci 49:1281–1284

    Google Scholar 

  32. Aldrich J, Cullis CA (1993) RAPD analysis in flax: Optimization of yield and reproducibility using Klen Taq1DNA polymerase, chelexl 100, and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141

    Article  CAS  Google Scholar 

  33. Qi XL, Li B, Song S, Chen X, Peng M (2011) A Kind of simple and efficient DNA recovery method from polyacrylamide gel. Chin Ari Sci Bull 27:214–217

    Google Scholar 

  34. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rdedition. Cold Spring Harbor Laboratory Cold Spring Harbor, New York

    Google Scholar 

  35. Stakman EC, Premeisel J (1917) A new strain of Puccinia graminis. Phytopathology 7:73

    Google Scholar 

  36. Jin Y, Szabo LJ, Rouse MN, Fetch T Jr, Pretorius Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  37. Tu C (1934) Physiologic forms of Puccinia graminis tritici in Kwangtung, Southern China. Phytopathology 24:423

    Google Scholar 

  38. Wu YS, Huang ZT (1987) Racial identification and dynamics analysis of Puccinia graminis f. sp. tritici for past 20 years in China. J Shenyang Agric Univ 18:105–138

    Google Scholar 

  39. Yao P, Cao YY, Wu YS (1993) Race identification of Puccinia graminis f. sp. tritici in China in 1990. J Plant Protect 20:65–70

    Google Scholar 

Download references

Funding

This study was supported by the Heilongjiang Academy of Agricultural Sciences Doctoral Research start-up fund, the National Natural Science Foundation of China (31701738), the National Natural Science Foundation of China (31471546) and Harbin science and technology bureau planning project (2016AE6AE001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-ya Li or Yuan-yin Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yang, X., Huang, Wg. et al. Development of a specific AFLP-based SCAR marker for Chinese Race 34MKG of Puccinia graminis f. sp. tritici. Mol Biol Rep 47, 4303–4309 (2020). https://doi.org/10.1007/s11033-020-05513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05513-4

Keywords

Navigation