Skip to main content

Advertisement

Log in

The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The significant role of VEGF (vascular endothelial growth factor) as an angiogenesis inducer is well recognized. Besides VEGF, EphrinB2/EphB4 also plays essential roles in vascular development and postnatal angiogenesis. Compared with classical proangiogenic factors, not only does EphrinB2/EphB4 promote sprouting of new vessels, it is also involved in the vessel maturation. Given their involvement in many physiologic and pathological conditions, EphB4 and EphrinB2 are increasingly recognized as attractive therapeutic targets for angiogenesis-related diseases through modulating their expression and function. Previous works mainly focused on the individual role of VEGF and EphrinB2/EphB4 in angiogenesis, respectively, but the correlation between EphrinB2/EphB4 and VEGF in angiogenesis has not been fully disclosed. Here, we summarize the structure and bidirectional signaling of EphrinB2/EphB4, provide an overview on the relationship between EphrinB2/EphB4 signaling and VEGF pathway in angiogenesis and highlight the associated potential usefulness in anti-angiogenetic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  2. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  3. Siemerink MJ, Augustin AJ, Schlingemann RO (2010) Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol 46:4–20

    Article  CAS  PubMed  Google Scholar 

  4. Siemerink MJ, Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy. J Histochem Cytochem 61:101–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Adams CM, Anderson K, Artman G, Bizec JC, Cepeda R, Elliott J et al (2018) The discovery of N-(1-Methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl)-5-((6-((methylamino)methyl)pyrimidin-4- yl)oxy)-1H-indole-1-carboxamide (Acrizanib), a VEGFR-2 inhibitor specifically designed for topical ocular delivery, as a therapy for neovascular age-related macular degeneration. J Med Chem 61:1622–1635

    Article  CAS  PubMed  Google Scholar 

  6. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066

    Article  CAS  PubMed  Google Scholar 

  7. Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Investig 123:3190–3200

    Article  CAS  PubMed  Google Scholar 

  8. Abengozar MA, de Frutos S, Ferreiro S, Soriano J, Perez-Martinez M, Olmeda D et al (2012) Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood 119:4565–4576

    Article  CAS  PubMed  Google Scholar 

  9. Hangai M, Murata T, Miyawaki N, Spee C, Lim JI, He S, Hinton DR, Ryan SJ (2001) Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells. Investig Ophthalmol Vis Sci 42:9

    Google Scholar 

  10. Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barquilla A, Pasquale EB (2015) Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol 55:465–487

    Article  CAS  PubMed  Google Scholar 

  12. Saha N, Robev D, Mason EO, Himanen JP, Nikolov DB (2018) Therapeutic potential of targeting the Eph/ephrin signaling complex. Int J Biochem Cell Biol 105:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pierscianek D, Wolf S, Keyvani K, El Hindy N, Stein KP, Sandalcioglu IE et al (2017) Study of angiogenic signaling pathways in hemangioblastoma. Neuropathology 37:3–11

    Article  CAS  PubMed  Google Scholar 

  14. Chrencik JE, Brooun A, Recht MI, Kraus ML, Koolpe M, Kolatkar AR et al (2006) Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure 14:321–330

    Article  CAS  PubMed  Google Scholar 

  15. Chrencik JE, Brooun A, Kraus ML, Recht MI, Kolatkar AR, Han GW et al (2006) Structural and biophysical characterization of the EphB4/ephrinB2 protein-protein interaction and receptor specificity. J Biol Chem 281:28185–28192

    Article  CAS  PubMed  Google Scholar 

  16. Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS (2013) EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol 24:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brantley-Sieders DM, Chen J (2004) Eph receptor tyrosine kinases in angiogenesis: from development to disease. Angiogenesis 7:17–28

    Article  CAS  PubMed  Google Scholar 

  18. Pasquale EB (1997) The Eph family of receptors. Curr Opin Cell Biol 9:608–615

    Article  CAS  PubMed  Google Scholar 

  19. Kania A, Klein R (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17:240–256

    Article  CAS  PubMed  Google Scholar 

  20. Himanen JP, Saha N, Nikolov DB (2007) Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 19:534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Genander M, Frisen J (2010) Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol 22:611–616

    Article  CAS  PubMed  Google Scholar 

  22. Boyd AW, Bartlett PF, Lackmann M (2014) Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov 13:39–62

    Article  CAS  PubMed  Google Scholar 

  23. Su SA, Xie Y, Zhang Y, Xi Y, Cheng J, Xiang M (2019) Essential roles of EphrinB2 in mammalian heart: from development to diseases. Cell Commun Signal 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R et al (2002) EphrinB phosphorylation and reverse signaling. Mol Cell 9:725–737

    Article  CAS  PubMed  Google Scholar 

  25. Bong YS, Lee HS, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L et al (2007) EphrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci 104:17305–17310

    Article  CAS  PubMed  Google Scholar 

  26. Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413:174–179

    Article  CAS  PubMed  Google Scholar 

  27. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    Article  CAS  PubMed  Google Scholar 

  28. Yang D, Jin C, Ma H, Huang M, Shi G-P, Wang J et al (2016) EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 19:297–309

    Article  CAS  PubMed  Google Scholar 

  29. Cheng N, Brantley DM, Chen J (2002) The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13:75–85

    Article  CAS  PubMed  Google Scholar 

  30. Kuijper S, Turner CJ, Adams RH (2007) Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc Med 17:145–151

    Article  CAS  PubMed  Google Scholar 

  31. He S, Ding Y, Zhou J, Krasnoperov V, Zozulya S, Kumar SR et al (2005) Soluble EphB4 regulates choroidal endothelial cell function and inhibits laser-induced choroidal neovascularization. Investig Ophthalmol Vis Sci 46:4772–4779

    Article  Google Scholar 

  32. Germain S, Eichmann A (2010) VEGF and ephrin-B2: a bloody duo. Nat Med 16:752–754

    Article  CAS  PubMed  Google Scholar 

  33. Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 29:2125–2131

    Article  CAS  PubMed  Google Scholar 

  34. Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z (2018) Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med 42:1827–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lawson ND, Scheer N, Pham VN, Kim C-H, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  36. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    Article  CAS  PubMed  Google Scholar 

  37. Sivarapatna A, Ghaedi M, Le AV, Mendez JJ, Qyang Y, Niklason LE (2015) Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 53:621–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hainaud P, Contreres JO, Villemain A, Liu LX, Plouet J, Tobelem G et al (2006) The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrinB2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 66:8501–8510

    Article  CAS  PubMed  Google Scholar 

  39. Bai J, Wang YJ, Liu L, Zhao YL (2014) Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42:405–415

    Article  PubMed  CAS  Google Scholar 

  40. Sturtzel C, Lipnik K, Hofer-Warbinek R, Testori J, Ebner B, Seigner J et al (2018) FOXF1 mediates endothelial progenitor functions and regulates vascular sprouting. Front Bioeng Biotechnol 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vihanto MM, Plock J, Erni D, Frey BM, Frey FJ, Huynh-Do U (2005) Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin. FASEB J 19:1689–1691

    Article  CAS  PubMed  Google Scholar 

  42. Yuan C, Wang P, Zhu L, Dissanayaka WL, Green DW, Tong EH et al (2015) Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro. Tissue Eng Part A 21:1163–1172

    Article  CAS  PubMed  Google Scholar 

  43. Dong X, Wang YS, Dou GR, Hou HY, Shi YY, Zhang R et al (2011) Influence of Dll4 via HIF-1alpha-VEGF signaling on the angiogenesis of choroidal neovascularization under hypoxic conditions. PLoS ONE 6:e18481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    Article  CAS  PubMed  Google Scholar 

  45. Li JL, Harris AL (2009) Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci 14:3094–3110

    Article  CAS  Google Scholar 

  46. Katsuta H, Fukushima Y, Maruyama K, Hirashima M, Nishida K, Nishikawa SI et al (2013) EphrinB2–EphB4 signals regulate formation and maintenance of Funnel-shaped valves in corneal lymphatic capillaries. Investig Ophthalmol Vis Sci 54:4102

    Article  CAS  Google Scholar 

  47. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486

    Article  CAS  PubMed  Google Scholar 

  48. Mäkinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA (2005) PDZ interaction site in EphrinB2 is required for the remodeling of lymphatic vasculature. Gene Dev 19:397–410

    Article  PubMed  CAS  Google Scholar 

  49. Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S et al (2015) Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 369:20–27

    Article  CAS  PubMed  Google Scholar 

  50. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294

    Article  CAS  PubMed  Google Scholar 

  51. Yang C, Guo Y, Jadlowiec CC, Li X, Lv W, Model LS et al (2013) Vascular endothelial growth factor-A inhibits EphB4 and stimulates delta-like ligand 4 expression in adult endothelial cells. J Surg Res 183:478–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pierscianek D, Michel A, Hindy NE, Keyvani K, Dammann P, Oezkan N et al (2016) Activation of multiple angiogenic signaling pathways in hemangiopericytoma. Brain Tumor Pathol 33:200–208

    Article  CAS  PubMed  Google Scholar 

  53. You C, Zhao K, Dammann P, Keyvani K, Kreitschmann-Andermahr I, Sure U, Zhu Y (2017) EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med 21:1848–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M, Kurabayashi M (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun 341:708–714

    Article  CAS  PubMed  Google Scholar 

  55. Cowan CA, Yokoyama N, Saxena A, Chumley MJ, Silvany RE, Baker LA et al (2004) Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev Biol 271:263–271

    Article  CAS  PubMed  Google Scholar 

  56. Hayashi S, Asahara T, Masuda H, Isner JM, Losordo DW (2005) Functional ephrin-B2 expression for promotive interaction between arterial and venous vessels in postnatal neovascularization. Circulation 111:2210–2218

    Article  CAS  PubMed  Google Scholar 

  57. Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HC et al (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15:249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491

    Article  CAS  PubMed  Google Scholar 

  59. Yuan C, Wang P, Zhu S, Liu Z, Wang W, Geng T et al (2019) Overexpression of ephrinB2 in stem cells from apical papilla accelerates angiogenesis. Oral Dis 25:848–859

    Article  PubMed  Google Scholar 

  60. Xu X, Tang LQ, Ma SC, Gao LJ, Huang XQ, Fan WM, Ma YL (2008) EphrinB2 gene transfection promotes the differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells. J South Med Univ 28:790–794

    Google Scholar 

  61. Das A, Shergill U, Thakur L, Sinha S, Urrutia R, Mukhopadhyay D et al (2010) EphrinB2/EphB4 pathway in hepatic stellate cells stimulates Erk-dependent VEGF production and sinusoidal endothelial cell recruitment. Am J Physiol Gastrointest Liver Physiol 298:G908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gong T, Xu J, Heng B, Qiu S, Yi B, Han Y et al (2019) EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells. J Dent Res 98:803–812

    Article  CAS  PubMed  Google Scholar 

  63. Yuan C, Wang P, Zhu S, Zou T, Wang S, Xu J et al (2016) EphrinB2 stabilizes vascular-like structures generated by endothelial cells and stem cells from apical papilla. J Endod 42:1362–1370

    Article  PubMed  Google Scholar 

  64. Maekawa H, Oike Y, Kanda S, Ito Y, Yamada Y, Kurihara H et al (2003) Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb Vasc Biol 23:2008–2014

    Article  CAS  PubMed  Google Scholar 

  65. Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH, Granger HJ (2002) EphB4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem 277:43830–43835

    Article  CAS  PubMed  Google Scholar 

  66. Lv J, Xia Q, Wang J, Shen Q, Zhang J, Zhou X (2016) EphB4 promotes the proliferation, invasion, and angiogenesis of human colorectal cancer. Exp Mol Pathol 100:402–408

    Article  CAS  PubMed  Google Scholar 

  67. Ehlken C, Martin G, Lange C, Gogaki EG, Fiedler U, Schaffner F et al (2011) Therapeutic interference with EphrinB2 signalling inhibits oxygen-induced angioproliferative retinopathy. Acta Ophthalmol 89:82–90

    Article  CAS  PubMed  Google Scholar 

  68. Mansson-Broberg A, Siddiqui AJ, Genander M, Grinnemo KH, Hao X, Andersson AB et al (2008) Modulation of ephrinB2 leads to increased angiogenesis in ischemic myocardium and endothelial cell proliferation. Biochem Biophys Res Commun 373:355–359

    Article  CAS  PubMed  Google Scholar 

  69. Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J et al (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25:628–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jadlowiec CC, Feigel A, Yang C, Feinstein AJ, Kim ST, Collins MJ et al (2013) Reduced adult endothelial cell EphB4 function promotes venous remodeling. Am J Physiol Cell Physiol 304:C627–635

    Article  CAS  PubMed  Google Scholar 

  71. Kimura M, Sano D, Fujita K, Sakakibara A, Kondo N, Mikami Y et al (2009) Soluble form of ephrinB2 inhibits xenograft growth of squamous cell carcinoma of the head and neck. Int J Oncol 34:7

    Google Scholar 

  72. Groppa E, Brkic S, Uccelli A, Wirth G, Korpisalo-Pirinen P, Filippova M et al (2018) EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep 19:e45054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD et al (2002) EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J 16:1126–1128

    Article  CAS  PubMed  Google Scholar 

  74. Zamora DO, Davies MH, Planck SR, Rosenbaum JT, Powers MR (2005) Soluble forms of EphrinB2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy. Investig Ophthalmol Vis Sci 46:2175–2182

    Article  Google Scholar 

  75. Davies MH, Zamora DO, Smith JR, Powers MR (2009) Soluble ephrin-B2 mediates apoptosis in retinal neovascularization and in endothelial cells. Microvasc Res 77:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA (2012) Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 131:E614–624

    Article  CAS  PubMed  Google Scholar 

  77. Pasquale EB (2008) Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell 133:38–52

    Article  CAS  PubMed  Google Scholar 

  78. Braun J, Hoffmann SC, Feldner A, Ludwig T, Henning R, Hecker M, Korff T (2011) Endothelial cell ephrinB2-dependent activation of monocytes in arteriosclerosis. Arterioscler Thromb Vasc Biol 31:297–305

    Article  CAS  PubMed  Google Scholar 

  79. Vrahnas C, Blank M, Dite TA, Tatarczuch L, Ansari N, Crimeen-Irwin B et al (2019) Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 10:3436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tognolini M, Hassan-Mohamed I, Giorgio C, Zanotti I, Lodola A (2014) Therapeutic perspectives of Eph-ephrin system modulation. Drug Discov Today 19:661–669

    Article  CAS  PubMed  Google Scholar 

  81. Krasnoperov V, Kumar SR, Ley E, Li X, Scehnet J, Liu R et al (2010) Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol 176:2029–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen Y, Zhang H, Zhang Y (2019) Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin Cancer Biol 56:37–46

    Article  CAS  PubMed  Google Scholar 

  83. Xiao Z, Carrasco R, Kinneer K, Sabol D, Jallal B, Coats S, Tice DA (2012) EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: Implications for EphB4 as a cancer target. Cancer Biol Ther 13:630–637

    Article  CAS  PubMed  Google Scholar 

  84. Kertesz N, Krasnoperov V, Reddy R, Leshanski L, Kumar SR, Zozulya S, Gill PS (2006) The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107:2330–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi S, Liu J, Joshi SB, Krasnoperov V, Gill P, Middaugh CR et al (2012) Biophysical characterization and stabilization of the recombinant albumin fusion protein sEphB4-HSA. J Pharm Sci 101:1969–1984

    Article  CAS  PubMed  Google Scholar 

  86. Martiny-Baron G, Korff T, Schaffner F, Esser N, Eggstein S, Marme D et al (2004) Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6:248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He S, Kumar SR, Zhou P, Krasnoperov V, Ryan SJ, Gill PS, Hinton DR (2010) Soluble EphB4 inhibition of PDGF-induced RPE migration in vitro. Investig Ophthalmol Vis Sci 51:543–552

    Article  Google Scholar 

  88. Scehnet JS, Ley EJ, Krasnoperov V, Liu R, Manchanda PK, Sjoberg E et al (2009) The role of Ephs, Ephrins, and growth factors in Kaposi sarcoma and implications of EphrinB2 blockade. Blood 113:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu R, Ferguson BD, Zhou Y, Naga K, Salgia R, Gill PS et al (2013) EphB4 as a therapeutic target in mesothelioma. BMC Cancer 13:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li X, Choi WW, Yan R, Yu H, Krasnoperov V, Kumar SR et al (2014) The differential expression of EphB2 and EphB4 receptor kinases in normal bladder and in transitional cell carcinoma of the bladder. PLoS ONE 9:e105326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Koolpe M, Burgess R, Dail M, Pasquale EB (2005) EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 280:17301–17311

    Article  CAS  PubMed  Google Scholar 

  92. You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S et al (2012) Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res 72:4777–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Duggineni S, Mitra S, Noberini R, Han X, Lin N, Xu Y et al (2013) Design, synthesis and characterization of novel small molecular inhibitors of ephrin-B2 binding to EphB4. Biochem Pharmacol 85:507–513

    Article  CAS  PubMed  Google Scholar 

  94. Bardelle C, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG et al (2008) Inhibitors of the tyrosine kinase EphB4. Part 1: Structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bioorg Med Chem Lett 18:2776–2780

    Article  CAS  PubMed  Google Scholar 

  95. Bardelle C, Coleman T, Cross D, Davenport S, Kettle JG, Ko EJ et al (2008) Inhibitors of the tyrosine kinase EphB4. Part 2: Structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines. Bioorg Med Chem Lett 18:5717–5721

    Article  CAS  PubMed  Google Scholar 

  96. Bardelle C, Barlaam B, Brooks N, Coleman T, Cross D, Ducray R et al (2010) Inhibitors of the tyrosine kinase EphB4. Part 3: identification of non-benzodioxole-based kinase inhibitors. Bioorg Med Chem Lett 20:6242–6245

    Article  CAS  PubMed  Google Scholar 

  97. Barlaam B, Ducray R, Brempt CL, Plé P, Bardelle C, Brooks N et al (2011) Inhibitors of the tyrosine kinase EphB4. Part 4: discovery and optimization of a benzylic alcohol series. Bioorg Med Chem Lett 21:2207–2211

    Article  CAS  PubMed  Google Scholar 

  98. Mitchell SA, Danca MD, Blomgren PA, Darrow JW, Currie KS, Kropf JE et al (2009) Imidazo[1,2-a]pyrazine diaryl ureas: inhibitors of the receptor tyrosine kinase EphB4. Bioorg Med Chem Lett 19:6991–6995

    Article  CAS  PubMed  Google Scholar 

  99. Lafleur K, Huang D, Zhou T, Caflisch A, Nevado C (2009) Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J Med Chem 52:6433–6446

    Article  CAS  PubMed  Google Scholar 

  100. Lafleur K, Dong J, Huang D, Caflisch A, Nevado C (2013) Optimization of inhibitors of the tyrosine kinase EphB4. 2. Cellular potency improvement and binding mode validation by X-ray crystallography. J Med Chem 56:84–96

    Article  CAS  PubMed  Google Scholar 

  101. Zhang L, Shan Y, Ji X, Zhu M, Li C, Sun Y et al (2017) Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget 8:104745–104760

    Article  PubMed  PubMed Central  Google Scholar 

  102. Werner TL, Wade ML, Agarwal N, Boucher K, Patel J, Luebke A et al (2015) A pilot study of JI-101, an inhibitor of VEGFR-2, PDGFR-beta, and EphB4 receptors, in combination with everolimus and as a single agent in an ovarian cancer expansion cohort. Investig New Drugs 33:1217–1224

    Article  CAS  Google Scholar 

  103. Pietanza MC, Lynch TJ Jr, Lara PN Jr, Cho J, Yanagihara RH, Vrindavanam N et al (2012) XL647-a multitargeted tyrosine kinase inhibitor: results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib. J Thorac Oncol 7:219–226

    Article  CAS  PubMed  Google Scholar 

  104. Martiny-Baron G, Holzer P, Billy E, Schnell C, Brueggen J, Ferretti M et al (2010) The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis 13:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundations of China (81873681, 81770952) and National Key Clinical Specialties Construction Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Li or Shikun He.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, E., Li, X., He, S. et al. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol Biol Rep 47, 4681–4690 (2020). https://doi.org/10.1007/s11033-020-05470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05470-y

Keywords

Navigation