Skip to main content

Advertisement

Log in

Clinically relevant pharmacogenetic markers in Tatars and Balkars

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the prevalence of CYP2C9*2 (p.430C > T, rs1799853), CYP2C9*3 (p.1075A > C, rs1057910), CYP4F2*3 (p.1297G > A, rs2108622), CYP2C19*2 (p.681G > A, rs4244285), CYP2C19*3 (p.636G > A, rs4986893), CYP2C19*17 (p.1260C > A, rs12248560), ABCB1 (p.3435C > T, rs1045642), CYP2D6*4 (p.1846G > A, rs3892097), SLCO1B1*5 (p.521T > C, rs4149056) and CES1 (p.1168-33A > C, rs2244613) among Tatars and Balkars ethnic groups living in Russia to provide a basis for future clinical studies concerning on understanding of population-level differences in drug response. The study involved 341 apparently healthy, unrelated, and chronic medication-free volunteers of both sexes of ethnic groups of Tatars and Balkars living in Volga and Caucasus regions of Russia. Genotyping was performed using real-time polymerase chain reaction-based methods. The allelic prevalence of studied markers in ethnic groups were compared with Russians as a largest ethnic group in Russia. Statistically significant differences for the following gene polymorphisms were found between both ethnic groups in respect of different markers and with Russians. Our study shows differences in prevalence of the main relevant pharmacogenetic markers in Tatars and Balkars. These findings should be taken into consideration for personalization algorithms development and pharmacogenetics implementation in regions with ethnic minorities as Russia has.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brockmöller J, Tzvetkov MV (2008) Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment. Eur J Clin Pharmacol 64(2):133–157. https://doi.org/10.1007/s00228-007-0424-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mini E, Nobili S (2009) Pharmacogenetics: implementing personalized medicine. Clin Cases Miner Bone Metab 6(1):17–24

    PubMed  PubMed Central  Google Scholar 

  3. Samani NJ, Tomaszewski M, Schunkert H (2010) The personal genome–the future of personalised medicine? Lancet 375(9725):1497–1498. https://doi.org/10.1016/S0140-6736(10)60598-3

    Article  PubMed  Google Scholar 

  4. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. https://doi.org/10.1056/NEJMp1500523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Decree of the President of the Russian Federation of 01.12.2016 No 642 "On Strategy of Scientific and Technological Development of the Russian Federation". https://kremlin.ru/acts/bank/41449

  6. Sychev DA, Shuev GN, Torbenkov ES, Adrijanova MA (2017) Personalized medicine: clinical pharmacologist's opinion. Consilium Medicum 1:61–68 (in Russian)

    Article  Google Scholar 

  7. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, Klein TE, Sabatine MS, Johnson JA, Shuldiner AR (2013) Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 94(3):317–323. https://doi.org/10.1038/clpt.2013.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, Antman EM, Braunwald E, Sabatine MS (2010) Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376(9749):1312–1319. https://doi.org/10.1016/S0140-6736(10)61273-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, Maxwell WD, McLeod HL, Krauss RM, Roden DM, Feng Q, Cooper-DeHoff RM, Gong L, Klein TE, Wadelius M, Niemi M (2014) The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 96(4):423–428. https://doi.org/10.1038/clpt.2014.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shumkov VA, Zagorodnikova KA, Boldueva SA (2014) Influence of CYP2D6 genetic polymorphism on pharmacokinetics and pharmacodynamics of beta-blockers in patients in early postinfarction period. Her Russ Acad Mil Med 1(45):233–236 (in Russian)

    Google Scholar 

  11. Kanuri SH, Kreutz RP (2019) Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. J Pers Med 9(1):7. https://doi.org/10.3390/jpm9010007

    Article  PubMed Central  Google Scholar 

  12. Paré G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, Axelsson T, Haertter S, Oldgren J, Reilly P, Siegbahn A, Syvanen AC, Wadelius C, Wadelius M, Zimdahl-Gelling H, Yusuf S, Wallentin L (2013) Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127(13):1404–1412. https://doi.org/10.1161/CIRCULATIONAHA.112.001233

    Article  CAS  PubMed  Google Scholar 

  13. Bluth MH, Li J (2011) Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmgenomics Pers Med 4:11–33. https://doi.org/10.2147/PGPM.S18861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKinnon RA, Ward MB, Sorich MJ (2007) A critical analysis of barriers to the clinical implementation of pharmacogenomics. Ther Clin Risk Manag 3(5):753–759

    Google Scholar 

  15. Zhang F, Finkelstein J (2019) Inconsistency in race and ethnic classification in pharmacogenetics studies and its potential clinical implications. Pharmgenomics Pers Med 12:107–123. https://doi.org/10.2147/PGPM.S207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. https://www.pharmgkb.org/vips

  17. Sychev DA, Abdullaev SP, Mirzaev KB, Ryzhikova KA, Shuyev GN, Sozaeva ZA, Grishina EA, Mammaev SN, Gafurov DM, Kitaeva EY, Shprakh VV, Suleymanov SS, Bolieva LZ, Sozaeva MS, Zhuchkova SM, Gimaldinova NE, Sidukova EE, Asoskova AV, Mumladze RB (2019) Genetic determinants of the safety of dabigatran (CES1 Gene rs2244613 Polymorphism) for the Russian population: a multi-ethnic analysis. Mol Biol Rep 46(3):2761–2769. https://doi.org/10.1007/s11033-019-04722-w

    Article  CAS  PubMed  Google Scholar 

  18. Tang H, Quertermous T, Rodriguez B, Kardia SL, Zhu X, Brown A, Pankow JS, Province MA, Hunt SC, Boerwinkle E, Schork NJ, Risch NJ (2005) Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76(2):268–275. https://doi.org/10.1086/427888

    Article  CAS  PubMed  Google Scholar 

  19. Gra O, Mityaeva O, Berdichevets I, Kozhekbaeva Z, Fesenko D, Kurbatova O, Goldenkova-Pavlova I, Nasedkina T (2010) Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet Test Mol Biomark 14(3):329–342. https://doi.org/10.1089/gtmb.2009.0158

    Article  CAS  Google Scholar 

  20. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM et al (2003) Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 59(4):303–312. https://doi.org/10.1007/s00228-003-0606-2

    Article  CAS  PubMed  Google Scholar 

  21. Ivashchenko D, Rusin I, Sychev D, Grachev A (2013) The frequency of CYP2C9, VKORC1, and CYP4F2 polymorphisms in Russian patients with high thrombotic risk. Medicina (Kaunas) 49(12):517–521. https://doi.org/10.3390/medicina49120081

    Article  Google Scholar 

  22. Zotova IV, Nikitin AG, Fattakhova EN, Brovkin AN, Khodyrev DS, Lavrikova EY, Isaeva MY, Kosukhina AS, Nosikov VV, Zateyshchikov DA (2013) The effect of influence of genes' polymorphisms CYP2C9 and VKORC1 on the safety of the therapy by warfarin. Clin Pract 4(16):3–10. https://doi.org/10.17816/clinpract443-10

    Article  Google Scholar 

  23. Kitaeva EYu, Shprakh VV, Mirzaev KB, Ryzhikova KA, Shuev GN, Sozaeva ZhA, Pimenova YA, Kogay VV, Sychev DA (2018) Frequency of CYP2C19 and ABCB1 genes polymorphisms, associated with the change, caused by clopidogrel antiagregant among the russians and the buryats. Sib Med Rev 3:43–50. https://doi.org/10.20333/2500136-2018-3-43-50

    Article  Google Scholar 

  24. Kazakov RE, Evteev VA, Muslimova OV, Mazerkina IA, Demchenkova EY, Shikh EV (2017) Prospects of using C3435T polymorphism in the ABCB1 gene encoding P-glycoprotein in personalised medicine. Bull Sci Centre Expert Eval Med Prod 7(4):212–220 (in Russian)

    Google Scholar 

  25. Sychev DA, Shuev GN, Chertovskih JV, Maksimova NR, Grachev AV, Syrkova OA (2016) The frequency of SLCO1B1*5 polymorphism genotypes among Russian and Sakha (Yakutia) patients with hypercholesterolemia. Pharmgenomics Pers Med 9:59–63. https://doi.org/10.2147/PGPM.S9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malyarchuk B, Derenko M, Denisova G, Kravtsova O (2010) Mitogenomic diversity in Tatars from the Volga-Ural region of Russia. Mol Biol Evol 27(10):2220–2226. https://doi.org/10.1093/molbev/msq065

    Article  CAS  PubMed  Google Scholar 

  27. Limborskaya SA, Khusnutdinova EK (2002) Ethnogenomics of the peoples of the Volga-Ural’s region. Nauka Publication, Moscow, p 250 (in Russian)

    Google Scholar 

  28. Khalikova AR, Arkhipova AA, Ahmetov II, Abdulkhakov RA, Abdulkhakov SR (2012) The study of cytochrome P-450 CYP2C19 gene polymorphisms in population of Tatars living in Republic of Tatarstan. Pract Med 3(58):53–55 (in Russian)

    Google Scholar 

  29. Korytina G, Kochetova O, Akhmadishina L, Viktorova E, Victorova T (2012) Polymorphisms of cytochrome p450 genes in three ethnic groups from Russia. Balkan Med J 29(3):252–260. https://doi.org/10.5152/balkanmedj.2012.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sychev DA, Burashnikova IS, Kazakov RE (1846G) 1846G%3eA polymorphism of CYP2D6 gene and extrapyramidal side effects during antipsychotic therapy among Russians and Tatars: a pilot study. Drug Metab Pers Ther 31(4):205–212. https://doi.org/10.1515/dmpt-2016-0027

    Article  CAS  PubMed  Google Scholar 

  31. Gareeva AE, Kinyasheva KO, Galaktionova DY, Sabirov ET, Valinourov RG, Chudinov AV, Zasedatelev AS, Nasedkina TV, Khusnutdinova EK (2015) Polymorphism of brain neurotransmitter system genes: Search for pharmacogenetic markers of haloperidol efficiency in Russians and Tatars. Mol Biol 49:858–866. https://doi.org/10.1134/S0026893315050076

    Article  CAS  Google Scholar 

  32. Daly AK, King BP (2003) Pharmacogenetics of oral anticoagulants. Pharmacogenetics 13:247–252. https://doi.org/10.1097/00008571-200305000-00002

    Article  CAS  PubMed  Google Scholar 

  33. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72(6):702–710. https://doi.org/10.1067/mcp.2002.129321

    Article  CAS  PubMed  Google Scholar 

  34. Yang JQ, Morin S, Verstuyft C, Fan LA, Zhang Y, Xu CD, Barbu V, Funck-Brentano C, Jaillon P, Becquemont L (2003) Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol 17(3):373–376. https://doi.org/10.1046/j.1472-8206.2003.00148.x

    Article  CAS  PubMed  Google Scholar 

  35. Burian M, Grosch S, Tegeder I, Geisslinger G (2002) Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol 54(5):518–521. https://doi.org/10.1046/j.1365-2125.2002.01693.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hadjipanagi D, Chrysanthou S, Voskarides K, Deltas C (2014) Genetic polymorphisms in warfarin and tacrolimus-related genes VKORC1, CYP2C9 and CYP3A5 in the Greek-Cypriot population. BMC Res Notes 7:123. https://doi.org/10.1186/1756-0500-7-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z, Nacak M, Roots I (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48(3):409–415. https://doi.org/10.1046/j.1365-2125.1999.00012.x

    Article  CAS  PubMed  Google Scholar 

  38. Zhou Y, Ingelman-Sundberg M, Lauschke VM (2017) Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther 102(4):688–700. https://doi.org/10.1002/cpt.690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5(3):e1000433. https://doi.org/10.1371/journal.pgen.1000433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ (2010) Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 55(9):582–589. https://doi.org/10.1038/jhg.2010.73

    Article  CAS  PubMed  Google Scholar 

  41. Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P, Novelli G (2009) CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics 10(2):261–266. https://doi.org/10.2217/14622416.10.2.261

    Article  CAS  PubMed  Google Scholar 

  42. Sakiene R, Vilkeviciute A, Kriauciuniene L, Balciuniene VJ, Buteikiene D, Miniauskiene G, Liutkeviciene R (2016) CYP4F2 (rs2108622) Gene polymorphism association with age-related macular degeneration. Adv Med 2016:3917916. https://doi.org/10.1155/2016/3917916

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ (2010) Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 11(6):781–791. https://doi.org/10.2217/pgs.10.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Zou Y, Wang X, Huang X, Sun Y, Wang Y, Dong L, Jiang H (2015) Warfarin dosage response related pharmacogenetics in Chinese population. PLoS ONE 10(1):e0116463. https://doi.org/10.1371/journal.pone.0116463

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fu Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Shindo A, Ohta M, Soma M, Aoi N, Sato M, Matsumoto K, Ozawa Y, Ma Y (2008) Haplotype-based case-control study of the human CYP4F2 gene and essential hypertension in Japanese subjects. Hypertens Res 31(9):1719–1726. https://doi.org/10.1291/hypres.31.1719

    Article  CAS  PubMed  Google Scholar 

  46. Kim KA, Song WG, Lee HM, Joo HJ, Park JY (2014) Multiplex pyrosequencing method to determine CYP2C9*3, VKORC1*2, and CYP4F2*3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups. Mol Biol Rep 41(11):7305–7312. https://doi.org/10.1007/s11033-014-3617-4

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, An N, Wang H, Gao Y, Liu D, Bian T, Zhu J, Chen C (2011) Evaluation of the effects of 20 nonsynonymous single nucleotide polymorphisms of CYP2C19 on S-mephenytoin 4'-hydroxylation and omeprazole 5'-hydroxylation. Drug Metab Dispos 39(5):830–837. https://doi.org/10.1124/dmd.110.037549

    Article  CAS  PubMed  Google Scholar 

  48. Geisler T, Schaeffeler E, Dippon J, Winter S, Buse V, Bischofs C, Zuern C, Moerike K, Gawaz M, Schwab M (2008) CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 9(9):1251–1259. https://doi.org/10.2217/14622416.9.9.1251

    Article  CAS  PubMed  Google Scholar 

  49. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS, Weihe P, Edvardsen H, Kristensen VN, Brøsen K, Ingelman-Sundberg M (2010) Linkage disequilibrium between the CYP2C19*17 allele and wide type CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic population. Eur J Clin Pharmacol 66(12):1199–1205. https://doi.org/10.1007/s00228-010-0864-8

    Article  PubMed  Google Scholar 

  50. Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L (2010) CYP2C19 activity comparison between Swedish and Koreans: effect of genotype, sex, oral contraceptive use and smoking. Eur J Clin Pharmacol 66(9):871–877. https://doi.org/10.1007/s00228-010-0835-0

    Article  CAS  PubMed  Google Scholar 

  51. Kurzawski M, Gawrońska-Szklarz B, Wrześniewska J, Siuda A, Starzyńska T, Droździk M (2006) Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patient. Eur J Clin Pharmacol 62:877–880. https://doi.org/10.1007/s00228-006-0183-2

    Article  CAS  PubMed  Google Scholar 

  52. Sugimito K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65(3):437–439. https://doi.org/10.1111/j.1365-2125.2007.03057.x

    Article  CAS  Google Scholar 

  53. Kim KA, Song WK, Kim KR, Park JY (2010) Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J Clin Pharm Ther 35(6):697–703. https://doi.org/10.1111/j.1365-2710.2009.01069.x

    Article  PubMed  Google Scholar 

  54. Sukasem C, Tunthong R, Chamnanphon M, Santon S, Jantararoungtong T, Koomdee N, Prommas S, Puangpetch A, Vathesatogkit P (2013) CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmgenomics Pers Med 6:85–91. https://doi.org/10.2147/PGPM.S42332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mirzaev KB, Sychev DA, Ryzhikova KA, Konova OD, Mammaev SN, Gafurov DM, Shuev GN, Grishina EA, Sozaeva ZA (2017) Genetic polymorphisms of cytochrome P450 enzymes and transport proteins in a Russian population and three ethnic groups of Dagestan. Genet Test Mol Biomark 21(12):747–753. https://doi.org/10.1089/gtmb.2017.0036

    Article  CAS  Google Scholar 

  56. Romodanovsky DP, Khapaev BA, Ignatiev IV, Kukes VG, Karkischenko VN (2010) Frequencies the «slow» allele variants of the genes coding isoenzymes of cytochrome P450 CYP2D6, CYP2C19, CYP2C9 in Karachaevs and Circassians. Biomedicine 2:33–37 (in Russian)

    Google Scholar 

  57. Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG (2009) Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: the case of Greece. Pharmacogenomics 10(1):43–49. https://doi.org/10.2217/14622416.10.1.43

    Article  CAS  PubMed  Google Scholar 

  58. Ing Lorenzini K, Daali Y, Fontana P, Desmeules J, Samer C (2016) Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol 7:494. https://doi.org/10.3389/fphar.2016.00494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Wang Y, Sun J, Yang L (2006) Distribution of the functional MDR1 C3435T polymorphism in the Han population of China. Swiss Med Wkly 136(23–24):377–382

    CAS  PubMed  Google Scholar 

  60. Bernal ML, Sinues B, Fanlo A, Mayayo E (2003) Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population. Ther Drug Monit 25(1):107–111. https://doi.org/10.1097/00007691-200302000-00016

    Article  CAS  PubMed  Google Scholar 

  61. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97(7):3473–3478. https://doi.org/10.1073/pnas.050585397

    Article  CAS  PubMed  Google Scholar 

  62. The Ensembl project (EMBI-EBI). https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;v=rs2244613;vdb=variation#population_freq_EAS

  63. Shin J, Johnson JA (2007) Pharmacogenetics of beta-blockers. Pharmacotherapy 27(6):874–887. https://doi.org/10.1592/phco.27.6.874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53:111–122. https://doi.org/10.1046/j.0306-5251.2001.01548.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sachse C, Brockmoller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kitada M (2003) Genetic polymorphism of cytochrome P450 enzymes in Asian populations: focus on CYP2D6. Int J Clin Pharmacol Res 23(1):31–35

    CAS  PubMed  Google Scholar 

  67. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K, Ebrahim S (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 1:CD004816. https://doi.org/10.1002/14651858.CD004816.pub5

    Article  Google Scholar 

  68. Carr DF, O'Meara H, Jorgensen AL, Campbell J, Hobbs M, McCann G, van Staa T, Pirmohamed M (2013) SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clin Pharmacol Ther 94(6):695–701. https://doi.org/10.1038/clpt.2013.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu M, Tomlinson B (2012) Effects of statin treatments and polymorphisms in UGT1A1 and SLCO1B1 on serum bilirubin levels in Chinese patients with hypercholesterolaemia. Atherosclerosis 223(2):427–432. https://doi.org/10.1016/j.atherosclerosis.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  70. Mikulová M, Kramarova V, Chandoga J (2016) Frequency of single nucleotide polymorphisms of the SLCO1B1 gene in slavic population of Central Europe. J Biol Sci 16(4):175–183. https://doi.org/10.3844/ojbsci.2016.175.183

    Article  CAS  Google Scholar 

  71. Pasanen MK, Backman JT, Neuvonen PJ, Niemi M (2006) Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in a Finnish population. Eur J Clin Pharmacol 62(6):409–415. https://doi.org/10.1007/s00228-006-0123-1

    Article  CAS  PubMed  Google Scholar 

  72. Wang D, Zou L, Jin Q, Hou J, Ge G, Yang L (2018) Human carboxylesterases: a comprehensive review. Acta Pharm Sin B 8(5):699–712. https://doi.org/10.1016/j.apsb.2018.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hamzic S, Kummer D, Milesi S, Mueller D, Joerger M, Aebi S, Amstutz U, Largiader CR (2017) Novel genetic variants in carboxylesterase 1 predict severe early-onset capecitabine-related toxicity. Clin Pharmacol Ther 102(5):796–804. https://doi.org/10.1002/cpt.641

    Article  CAS  PubMed  Google Scholar 

  74. Shi J, Wang X, Nguyen JH, Bleske BE, Liang Y, Liu L, Zhu HJ (2016) Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol 119:76–84. https://doi.org/10.1016/j.bcp.2016.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokhrukh Pardaboevich Abdullaev.

Ethics declarations

Conflict of interest

This work was supported by the Russian Scientific Foundation Grant No. 18-75-00112 "Genetic Determinants of Drug Sensitivity in the Indigenous Peoples of the North Caucasus, the Republic of Crimea, the Volga Region and Siberia". The funding organization played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Ethical approval

The study has been performed in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow. Written informed consent in Russian language was obtained from all participants before entering the study. According to the informed consent terms all study results could be used for scientific purposes without uncovering personal identifiers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, S.P., Mirzaev, K.B., Burashnikova, I.S. et al. Clinically relevant pharmacogenetic markers in Tatars and Balkars. Mol Biol Rep 47, 3377–3387 (2020). https://doi.org/10.1007/s11033-020-05416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05416-4

Keywords

Navigation